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Ephemeral plants and ephemeral plant tissues are generally claimed to
escape from the selective pressure of insect herbivores to a larger extent than
do predictable plants and plant tissues, since it is difficult for herbivores to

locate ephemeral food resources (Feeny, 1975,

1976; Rhoades and Cates,

1976). Hence, according to the phenological characteristics of their

14
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host-plants, i.e. either annual, herbaceous perennial, deciduous woody
perennial or evergeen woody perennial plants, drosophilid populations
display dispersal characteristics and demographic traits which are attuned
to the temporal and spatial patchiness of the plants used as larval resources.
Furthermore, the generalization that emerges from the biochemical
coevolutionary theory of community structure initiated by Feeny (1975,
1976) and Rhoades and Cates (1976) is that most plants contain a double
defensive system, with tissue predictability and availability as a food
resource to herbivores being the main determinant of the defense type
employed. Plant species which are ‘“hard to find” by insect herbivores
display defensive phenotypes, like specific toxins, which are diverse and
qualitative. In contrast, plant species which are “bound to be found” appear
to have evolved quantitative defenses involving unspecific digestibility-
reducing substances or properties. Such spatial or temporal patchiness,
supplemented by diverging chemical defensive systems, pose ecological
barriers (and has posed evolutionary barriers) to host-plant shift and
host-plant switching in herbivorous drosophilid species.

Although most resources of drosophilids are plant tissues, many of them
come from other insects as well, since commensalism and predation have
evolved in addition to herbivory in African drosophilids. These host insects
or prey insects have their own population genetics (polymorphisms), life
histories, phenologies, and population dynamics, which affect those of the
drosophilid populations whose larvae feed upon them. Moreover, the
evolutionary responses to interspecific interactions feed back on the
interactions themselves, thereby affecting the species composition and
structure of ecological communities (Futuyma, 1979).

As aresult, both specialization and generalization have evolved in tropical
African drosophilids as effective adaptive strategies. Since many fundamen-
tal aspects of population ecology are illustrated in other chapters of this
volume, we will mainly focus attention upon the question of resource
selection and the respective evolutionary advantages of being specialists or
generalists.

II. The African Fig-Breeding Drosophilids

In the tropical African region the entire Lissocephala genus and the endemic

JSima species group of Drosophila have evolved a close association with
endemic figs (Ficus spp., Moraceae). From only 19 fig species—out of a total
of 90 recognized in Berg e al.’s (1983) flora of Moraceae—35 narrowly
restricted fig-breeding drosophilids are already known. These fig-depen-
dent drosophilids represent a major evolutionary pathway peculiar to the
tropical African drosophilid fauna (Lachaise ez al., 1982).
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Drosophilids breeding in figs are known from other parts of the world. In
El Salvador, ten species involving three genera (Diathoneura, Drosophila
and Stegana) were reared from Ficus by Heed (1957); in Californian fig
orchards, Drosophila melanogaster commonly lay many eggs in the edible fig
Ficus carica L. (Miller and Phaff, 1962); in Australia, one species of
Liodrosophila has been bred out of rainforest figs (Bock and Parsons, 1981).
However, there is no evidence that the American and Australian fig-breed-
ing species are dependent upon Ficus and they probably exploit figs
opportunistically. Nothing like strict fig dependence and broad endemic
adaptive radiation related to fig evolution has been found anywhere except
Africa. However, similar conditions favoring such evolution occur in
Borneo and New Guinea where figs (Corner, 1958, 1965, 1976), fig wasps
(Wiebes, 1963) and drosophilids (Okada, Chapter 6, Volume 3a) are highly
diversified. Until recently the geographical range of the genus Lissocephala
was assumed to be paleotropical. In the Oriental and Australian regions six
species are at present included in the genus Lissocephala. One of them, L.
powelli from Christmas Island in the Indian Ocean, breeds as an obligatory
commensal in the nephric pad region of the branchial chamber of land crabs
(Carson and Wheeler, 1973; Carson, 1974). Another, L. metallescens, living
in the Australian rainforest, is attracted to mushroom (Agaricus campestris)
baits in considerable numbers (Bock and Parsons, 1981). However, there is
strong evidence (T'sacas et al., 1981) to suggest that the genus Lissocephala is
endemic to tropical Africa and that the Oriental and Australian species
should be placed in a different genus. This specialization of Lissocephala on
Ficus and the evolutionary radiation in this drosophilid genus are peculiar to
tropical Africa as far as we know.

Recently, Lachaise et al. (1982) have proposed a tentative historical
explanation of how the association with fig has arisen, at least for
Lissocephala. This includes 19 species in the genus Lissocephala and 16
species in the Drosophila fima species group which is also unequivocally
endemic to this region. Species of Lissocephala only breed in immature figs.
Most, but not all, fima group species are fig breeders, but are confined to
post-mature figs. Speciation in Lissocephala is hypothesized to have
proceeded from convergent evolution with the obligatory pollinating fig
wasps. The Lissocephala radiation seems to have been an evolutionary
by-product of the fig/fig wasp co-speciation; this genus, probably the oldest
within the family Drosophilidae, has a long evolutionary history on the
African continent. Hence, Lissocephala speciation is assumed to represent a
fundamentally different evolutionary event than speciation within the fima
species group. The processes whereby either new Lissocephala species or
new fima group species have come into existence are not adequately known
but the underlying deterministic mechanisms are thought to require
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behavioral adaptations in the former taxon that are not required in the latter
one.

For pollination of figs, small chalcidoid Hymenoptera of the family
Agaonidae are absolutely necessary. There are about 900 species of figs in
the Old and New World tropics and, with only very rare exceptions where
strict specificity appears to break down (Wiebes, 1979), there is clear
evidence of a one-to-one relationship between species of fig and wasp
(Wiebes, 1963, 1966; Ramirez, 1970). As White (1978) says: “It seems
impossible to avoid the conclusion that the speciation of Ficus and of the
agaonid has been concomitant, i.e., that each incipient species of Ficus has
evolved in parallel with an incipient species of wasp”. This provides an
exceptionally sophisticated evolutionary situation and, hence, the possible
parallel evolution of some African drosophilids with the fig wasp system is of
particular interest.

The life histories of figs form the object of an abundant literature.
Detailed synthetic articles include Wiebes (1977, 1979), Galil (1977),
Janzen (1979a) and Valdeyron and Lloyd (1979). A summary of the major
facts borrowed from these articles, and which are needed for understanding
fig drosophilid biology, is presented below.

A. THE ORIGIN OF THE FiG SycoNIiuM

The fig syconium is a hollow urn-shaped receptacle bearing several
hundreds of female florets and fewer male florets on the inner surface (Fig.
1). The sheltered inflorescence of Ficus is assumed to be derived from a
hypothetical pre-Ficus plant with open inflorescences (Berg, 1977). The
pre-agaonid is suspected to have been a pollen-feeding gall-maker (Ramirez,
1976) or a gall-producing parasite of the pre-Ficus (Wiebes, 1979). This
latter author argued that the symbiosis of figs and wasps made possible, and
thus antedated, the special form of the svconium. An alternative proposal
would be that a wide array of phytophagous insects may have exerted such
strong selective pressure on this inflorescence that the pre-fig evolved a
flask-like inflorescence independently of the pre-agaonid. However,
between the necessities for pollination by insects and those of defense
against phytophagous insects, natural selection could only retain a trade-off:
a fig.

To protect the immature receptacle against herbivore attack, diverse
defense systems (physical as well as chemical) evolved in figs. The
receptacular structure of the fig is an anti-phytophagous insect barrier in
itself. The hard and thick woody pericarp developed in, for example, Ficus
macrosperma and F. vallis-choudae, and the hairy exocarp of F. saussureana
may also act as a defense against herbivores. These morphological defenses
are often coupled with chemical defenses as in other plant-insect systems
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(Ehrlich and Raven, 1965; Feeny, 1975; Rhoades and Cates, 1976). Among
the various chemicals in different species of figs are alkaloids and tannins in
Ficus indica Hochst. ex Walp. and F. sycomorus L. ssp. gnaphalocarpa (Miq.)
Berg (Persinos and Quimby, 1967); tannins in F. bracteata (Vellayan, 1981);
sterols and ascorbic acid in F. sur (=F. capensis F orsskdl) (Watt and
Breyer-Brandwijk, 1962); steroids, sapogenin, psoralen, bergapten and
several sterols in F. carica L. (Athnasios et al., 1962; El-Sayed El-Kholy and
Monem Shaban, 1966); flavonol glucosides and several sterols in F.
bengalensis L. (Sankara Subramanian and Nair, 1970); triterpenoids in F.
nitida L. (Elgamal ez al., 1975); and polyphenols in F. mysorensis Heyne
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=

F1G. 1. (Left) Breeding site partitioning within the syconium of Ficus sur Forsskil (= F.

capensis Thunberg) (Moraceae) in the Guinean pre-forest savannahs of Lamto in the Ivory

Coast. 1: Pollinating fig-wasp Ceratosolen capensis (Agaonidae, Agaoninae); 2: Sycophaga sp.

(Agaonidae, Sycophaginae); 3: Lissocephala disjuncta (Drosophilidae); 4: Zaprionus collarti,

Drosophila malerkotliana and Drosophila yakuba (Drosophilidae). (Right) Interrelationships
between fig, fig wasp and fig drosophilids (after Lachaise, 1979b).

(Bhansali ez al., 1978). Efficient chemical protection of the immature fig
against herbivores probably comes also from a derivative of latex which
soaks the receptacular wall of most figs and contains ficin, a powerful
protease ( Janzen, 1979a). Thus, the defensive chemistry of figs is probably
comprised both of a diverse array of toxic chemicals and a digestibility-
reducing system. Although the fig has evolved anti-phytophagous insect
defenses, the evolutionary processes have left a small gap in this defense, the
ostiole (the “Achilles’ heel” of the fig) which is protected only by a series of
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appressed and tightly imbricated bracts to allow the pollinator to enter. The
ostiole constitutes a selective filter that must admit appropriate gametes but
retard the passage of detrimental organisms (Janzen, 1979a).

B. ReprobpucTIVE BioLoGgy ofF FiGs

Complex symbiotic interrelationships and co-adaptations have evolved in
the syvconium and wasp. For successful reproduction, the fig wasps are
dependent upon the ovaries of the short-stvled flowers, while those flowers
whose long stvles exceed the length of the female fig wasp ovipositor give
rise to fig seeds (Galil and Eisikowitch, 1968; Janzen, 1979b, c). Entering the
syconium through the tightly interlocked ostiolar bracts (Fig. 1) requires
highly specific behavioral and morphological adjustments in the wasps. A
few female wasps enter the fig ostiole and manage to reach the cavity, losing
their wings and most parts of the antennae in the process. They start
ovipositing through the pistils of the female flowers and in doing so pollinate
the stigmas.

Several weeks separate maturation of the female flowers (female phase)
and that of the staminate flowers (male phase). The inter-floral phase is
assumed by Ramirez (1974) to be very constant for each species of fig and
varies with the species of the developing agaonids inside the fig. One
generation of wasps brings pollen to the syconium and the next one breeds
there during the interfloral period and takes out pollen. Hence, the
coordination of pollen maturation with the emergence of the second
generation of adult waps at the male phase is required for successful pollen
transfer (Galil, 1977). The strongly modified wingless male wasps emerge
from their galls first and thrive in the high concentration of carbon dioxide
in the syconial cavity—up to 109, in figs of Ficus religiosa L. (Galil et al.,
1973b). The males locate female-containing gall-shaped flowers, cut them
open, and impregnate the females while they are still within the galls (Fig. 2,
fand g). Before dying within the fig cavity where they were born and which
they will never leave, the fig male wasps perform a final function by boring
exit holes (Fig. 2, h) for the females through the syconial wall (Galil and
Eisikowitch, 1968). As carbon dioxide escapes and the internal atmosphere
equilibrates with the external, the females widen the fertilization holes and
emerge from their galls. Before leaving they approach the anthers, which
have only now reached maturation and fill their “pockets” or “corbiculae”
with pollen (Galil and Eisikowitch, 1969; Ramirez, 1969; Galil ez a/., 1973a;
Galil, 1977).

In addition to its effect on the activation of the female wasps, the
depletion of carbon dioxide also affects the postsexual development of the
fruits. Inhibition of yeast growth is also removed and the process of
alcoholic fermentation increases.
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F16. 2. (a) Immature fig cluster in Ficus sur Forsskil. (c): Cauliflory in F. sur, the fig-clusters
are composed of syconia in different stages of maturation providing a substrate patchiness
availability for fig-drosphilids. (b) and (d): Species packing on the fallen figs of F. sur; Db:
Drosophila bocqueti, Dy: D. yakuba, Zo: Zaprionus ornatus. (€): Drosophila fima (Df) on fallen
figs in F. sur. (f) and (g): pistillate flowers in Ficus vallis-choudae; SSF: short styled flower,
LSF: long styled flower, st: style, SYC.CAV: syconial cavity. (h): Two exit holes bored by the
male agaonid wasps beside the ostiolar area in F. vallis-choudae (Photographs from the
Guinean Zone of the Ivory Coast after D. Lachaise, except (b) which is after H. Antoine).
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C. THE F1G-BREEDING DROSOPHILIDS: FROM MONOPHAGY TO
OPPORTUNISM

All African species of the genus Lissocephala and all species of the Drosophila
Jfima species group breed in figs of the endemic species of the Afrotropical
genus Ficus. Thirty-five known species of drosophilids depend strictly on
figs. Their specificity to the different host-Ficus species varies according to
the particular fly species.

Nineteen Lissocephala species are so far known in the tropical African
region, associated with 17 fig species (Tsacas and Chassagnard, 1977, 1981;
Tsacas and Lachaise, 1979; Lachaise er al., 1982). We suspect there to be
many more species of Lissocephala for at least 90 species of fig occur in
continental Africa, nearly 60 of them being known from Cameroon and 40
from Gabon (Berg, 1983). The strict association between Lissocephala and
Ficus has been observed from the Sudanese savannahs to Uganda in
continental Africa and also from Reunion Island. It has been found in
lowland Sudanese savannahs (Senegal), lowland Guinean savannahs (Ivory
Coast), lowland evergreen rainforests (Ivory Coast, Cameroon, Gabon,
Uganda), second growth vegetation (Ivory Coast, Uganda, Reunion),
montane savannahs (Kounden plateau, 1500 m, Cameroon) and montane
evergreen rainforests (Tonkoui, Nimba, 300-1400 m, Ivory Coast).

The second endemic fig-breeding drosophilid group, the Drosophila fima
species group, is composed of sixteen species (abron, abure, akai, alladian,
dyula, fima, iroko, kulango, aloma, dimitra, microralis, petitae, sycophaga,
sycophila, sycovora, tychaea). Burla (1954), who created the fima group,
described the eight former species to which Tsacas and Lachaise (1981)
added the eight latter ones (Fig. 2c). The fima species group has a wide
distribution throughout the mainland from Sahel to South Africa and from
Guinea to Uganda, but is apparently lacking from Seychelles, Comoro,
Madagascar and Mascarene. Although the larval habit of a few species is still
not known, all adults that have been reared were bred from figs,
emphasizing the close dependence of these African drosophilid taxa upon
the genus Ficus. Twelve of the 16 fima group species were bred from 13 fig
species. The breeding sites of the four remaining Drosophila species are still
unknown, though adults of D. iroko were observed in abundance on fruits of
Tieghemella heckelii (Sapotaceae) in the evergreen rainforest of Tai (Ivory
Coast). Nevertheless, the adults of iroko are found along with the other fig
drosophilids. D. kulango is the only species of the fima group in Tai that
breeds in the fruits of another moraceous plant (Treculia africana) in
addition to Ficus. Of the fima group species only Drosophila fima has been
successfully bred for many generations on standard laboratory medium
although D. abron has been maintained with difficulty for four or five
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generations. D. abron has been bred only from figs, while fima has been bred
(once) from the fruits of Hirtella sp. (Rosaceae) and Nauclea sp.
(Rubiaceae), in addition to a large number from figs. These observations
suggest that some of the fima group species are not necessarily fig
dependent, though generally being fig associated. Although the fima group
as a whole displays a close association with Ficus and most of the relevant
species are strictly restricted to figs for breeding, some of them have retained
the ability to exploit, occasionally, a few other resources. The Drosophila
Jima group species show considerable sympatry. Thus, 13 species cohabit
the evergreen rainforest of Tai where six species were reared separately from
either Ficus mucuso, F. vogeliana or F. lyrata. In Gabon, eight species were
reared from the same fig cluster in F. subsagittifolia. In pre-forest savannahs
in the Ivory Coast, adults of ten species were found on the same host (F. sur).
Hence, there appears to be no preference for fig species among the fima
group species. Except possibly, the strict association between Drosophila
sycovora and F. vogeliana that new records suggest (Tsacas and Lachaise,
personal communication). However, this does not preclude oviposition
exclusion between species on the same syconium (Table I).

In addition to the essentially obligate fig-breeding drosophilids, there are
many facultative fig-breeders displaying greater or lesser preferences for
figs (Fig. 2, b and d). These include the genus Zaprionus (mainly Z. collarti,
Z. sepsoides, Z. ornatus), and, within the genus Drosophila, the ananassae
subgroup (D. malerkotliana and D. ananassae), the melanogaster subgroup
(mainly D. melanogaster and D. yakuba), and the montium subgroup (mainly
D. bakoue, D. bocqueti, D. greeni and D. nikananu). All three of these
subgroups belong to the melanogaster group. Species of the subgenus
Scaptodrosophila rarely breed in figs and those of the subgenus Drosophila
have never been reared from figs in Africa. A total of 56 drosophilid species
have been reared from 19 fig species. Adults of 86 species—including the 56
bred from figs—have been caught on these species of Ficus.

D. How THE ASSOCIATION WITH F1Gs May HAVE ARISEN

Lachaise et al. (1982) put forward the hypothesis that the genus Lissocephala
appeared on the African continent, where it has undergone a bursting
speciation owing to a convergent evolution with the obligatory pollinating,
and highly host-specific, fig wasps. The fig/fig wasp symbiosis is suspected
to have started in the Cretaceous, more than 100 million years ago (Wiebes,
1963; Galil, 1977), although unquestionable fossil fig wasps are only known
from the Miocene of Colorado (Brues, 1910). Because of a set of
plesiomorphic (“primitive””) characteristics the genus Lissocephala is
considered by Throckmorton (1975) to be the most primitive genus of
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Drosophilidae. Tsacas (1979) further suggested, from biogeographical
arguments, that the ancestors of the Sophophora subgenus of Drosophila
occurred before the separation of Africa and South America in late
Cretaceous. Therefore, the genus Lissocephala probably has a long history
on the African continent.

The evolution of figs has not in any way been dependent on Lissocephala
and the various species of fig can simply be regarded as so many niches
available for Lissocephala speciation. However, if speciation in Lissocephala
has not been involved in the coevolutionary process between figs and
pollinating fig wasps, it nevertheless seems to have been an evolutionary
by-product of that coevolution.

Species of the fima group almost always oviposit on the genus Ficus,
without regard to fig species. As Ehrlich and Raven (1965) and Janzen
(1968) have stressed for other plant-insect associations, by bridging the
defensive system of a particular fig species, these fig-breeding Drosophila
may have spread to the entire genus Ficus. However, some of the fima group
species (abron, fima, kulango) appear to remain restricted to figs though
being potentially able to breed in other fruits. The restriction to figs may be
related to the theoretical expectations of Levins and MacArthur (1969): as
the probability of failure to find an acceptable plant in a unit of time
increases, ‘“‘monophagy” may be optimal when higher and higher propor-
tions of unsuitable host plants are present. Similarly, Rausher (1980)
showed that the oviposition preference in the wild involves both host-plant
abundance and host-plant suitability for growth and survival of the juvenile
stages. Host-selection by the ovipositing females of the fima species group
may involve the trophic properties of the decaying syconium and the high
predictability of the whole multi-species fig community.

The balance between specialization and generalization on figs may well be
determined by such probability considerations involving toxicological or
digestibility-reducing defensive systems (Feeny, 1975; Rhoades and Cates,
1976). There is strong evidence, however, that specialization on figs has
evolved differently in Lissocephala and in the fima species group.

E. THE F1G Wasp-LIKE LISSOCEPHALA: AN HYPOTHESIS OF
EvoLuTioNnaARY CONVERGENCE

The outer wall of the young immature syconium is unsuitable for all
drosophilids, and for most other organisms. Therefore, the colonization of
figs by drosophilids begins inside the syconial cavity. Hence, only members
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of the genus Lissocephala which are able to gain entry into this cavity can
exploit early immature figs. Each African fig species harbors a particular
combination of Lissocephala species, and different fig species may have some
Lissocephala species in common. For instance Ficus vogeliana, from the
evergreen rainforest of Tai in southwestern Ivory Coast, yielded seven
Lissocephala species. Both F. ovata from Tai and F. lutea from Adiopo-
doumé yielded four Lissocephala species, and F. kamerunensis in Tai yielded
three. Comparing those pairs of fig species from which the same number of
Lissocephala species were reared, the overlap is three common species out of
seven in Ficus vogeliana and F. sur, and one common species out of four in F.
ovata and F. lutea. Different Lissocephala species can cohabit within a
syconium inasmuch as they oviposit sequentially as the immature syconium
develops (Fig. 3). Each fig species yields successively both Lissocephala
species with narrow host-fig specificity and species with a broader host-fig
specificity. The former differ then from one Ficus species to another whereas
the latter do not. The later the oviposition the less is the number of host-figs.
For example, in Ficus sur of Lamto, six Lissocephala species replace one
another in the order disjuncta, juncta, couturieri, ambigua, sp. nov., sanu (Fig.
4). Species such as L. disjuncta invade the fig in the earliest successional
stage while those such as L. sunu oviposit in the latest stage of immature
phase of the fig. Recently, we recognized different species groups within the
genus Lissocephala (Tsacas and Lachaise, 1979). The juncta group contains
species with a restricted number of host-figs, most often only one. The
assumption of a possible one-to-one relation between the species of
Lissocephala and the species of fig comes from the discovery of new species
of the juncta group as new Ficus are investigated. Whether the relation
between some species of Lissocephala and some species of figs is one-to-one
is not, however, yet known. Anyway, the sanu group contains species
utilizing a broad array of host-figs. Each Ficus harbors members of both the
Juncta group and the sanu group (and other still undefined species groups).
The juncta group species precede those of the sanu group in the succession.

Tsacas and Lachaise (1979) showed that the number of species of
Lissocephala is positively correlated with the number of individuals in a
single fig receptacle. Further, the number of species and species groups
cohabiting a common syconium apparently increases as the Lissocephala are
less closely related (Fig. 3). Coexistence is achieved by temporal (Fig. 4) as
well as spatial patchiness of the oviposition sites (Fig. 5).

We observed that the species of Lissocephala display marked changes in
chorionic protection according to the species group. The juncta group
species (diola, disjuncta) show strongly modified egg chorion features,
whereas the sanu group species (couturieri, lebou, sanu) have a smooth egg

,chorion, similar to that of the generalist Drosophila species (except for the
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GENUS LISSOCEPHALA
SANU GROUP JUNCTA* GROUP
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FiG. 3. (Upper) Smooth eggs in the less fig-specific Lissocephala species and protected eggs

in the more specific ones. (Lower left) Regression of the number of species of Lissocephala

cohabiting a single fig receptacle on the number of Lissocephala individuals breeding there;

(Lower right) Regression of the number of Lissacephala species groups coexisting per fig on
the number of Lissocephala species (after Tsacas and Lachaise, 1979).

lack of filaments) (Fig. 3). In the sanu group species the chorion is thin and
shows the characteristic Drosophila network of cellular hexagons, whereas
the outlines of the network of hexagons are blended by anastomosis of their
rims in the eggs of Lissocephala diola, which have in addition protuberances
and tubercules, and become entirely blurred in those of L. disjuncta which
have a striking ‘“‘corrugated iron” appearance (Fig. 6). The strongly
protected eggs are those which are directly inserted between the ostiolar
bracts, and it is assumed that the chorionic differentiations are protective
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F1G. 4. Ecological succession in fig-breeding drosophilids in Ficus sur Forsskal in the Ivory
Coast. Successional stages of the syconium: 1. floral immaturity (female-interfloral-male
phases); 2. floral maturity on the tree; 3. fallen syconium, early post-sexual period; 4.
decaying receptacle; 5. late decaying period, drying receptacle. The successive ovipositing fig
drosophilids are represented by their characteristic eggs. Ld: Lissocephala disjuncta; Lj: L.
Jjuncta; Le: L. couturiers; La: L. ambigua; Ls: L. sanu; Zc: Zaprionus collarti; Dy: Drosophila
yakuba; Dm: Drosophila malerkotliana; Dn: Drosophila nikananu; Zs: Zaprionus sepsoides; Zg:
Z. ghesquierei; Dg: Drosophila greeni; Dba: D. bakoue; Db: D. bocqueti; Zt: Zaprionus
tuberculatus; Dme: Drosophila melanogaster; Zo: Zaprionus ornatus; Da: Drosophila abure;
Dab: D. abron; Df: D. fima; Dak: D. akai; Dal: D. aloma,; D. sycophila and D. petitae (after
Lachaise ez al., 1982).

devices preventing squashing of the egg due to the bract pressure (Lachaise
et al., 1982). These findings are in accordance with the suggestion of
Kambysellis (1973, 1974) that the chorion pattern in drosophilid eggs is
adaptive. The Lissocephala with protected eggs also appear to be those
species with the narrowest host-specificity. It can be suggested that the egg
chorion feature has a predictive value both with regard to the number of
host-figs exploited and with regard to the oviposition period in the fig
succession. Therefore, we further suspect that the smooth-egg Lissocephala
species with a broad array of host-figs (L. sanu) may oviposit outside the
ostiole as do other smooth-egg Drosophila.

Those Lissocephala which breed inside the syconial receptacle gain entry
through the ostiolar filter and apparently cause neither damage to the fig
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hairy ring pad
eggs of Liss.

F1G. 5. (Upper left) Schematic drawing of fig-ostiole showing the different micro-oviposition

sites in Lissocephala species. 1: Lissocephala juncta in Ficus vallis-choudae; 2: L. disjuncta in F.

sur; 3: unindentified Lissocephala in F. exasperata (after Lachaise ef al., 1982). (Upper right)

Lateral view of L. disjuncta egg; V: Ventral; D: Dorsal. (Lower) Real situation in “2” (left)
and “1” (right) (after Lachaise, 1977).

F1G. 6. Lissocephala eggs (scanning electron microscopy); (a) L. disjuncta hatched egg in

dorsal view showing the thickness and the rigidity of the chorion on both sides of the

dehiscent split (DS); (b) and (e) L. disjuncta sculptured egg, ventral view; (c) and (g) L.

disjuncta sculptured egg, lateral view; (d) and (h) L. couturieri smooth egg, lateral view; (f) L.

couturieri smooth egg, ventral view. Scale bar for (a,e,f,g,h): 0-:05 mm; Scale bar for (b,c,d):
0-10 mm. D: Dorsal; V: Ventral (after Lachaise et al., 1981).
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inflorescence nor to the pollinating fig wasp larvae whose development has
come to an end. Many other characteristics of the life histories of fig wasps
and fig flies are similar. Both ovipositing and pollinating fig wasp and the
first ovipositing Lissocephala of the juncta group are attracted to the fig
ostiole at the same receptive stage (female phase of the fig). Both the adult fig
wasp and the first instar Lissocephala larvae gain entry at the same period
into the syconial cavity, forcing their way through the ostiolar bracts. For
both incoming female fig wasps and Lissocephala larvae the ostiolar bracts
act as a series of air-locks precluding exchange of the inner atmosphere with
that outside (Fig. 5). In the syconial cavity the drosophilid larvae develop
outside the flowers in synchrony with the new generation of fig wasp larvae
which are within the flowers, their similar development times matching the
interfloral span (Fig. 1). Pignal, Lachaise and Couturier (personal com-
munication) isolated veast cultures from both the immature syconia of Ficus
[yrata—directly picked up in the canopy of the Tai rainforest—and the
digestive tract of Lissocephala larva living within these closed syconia,
thereby showing the role of yeast in the diet of Lissocephala larvae. Whether
the introduction of yeasts into the previously sterile syconium is due to the
pollinating female fig wasps (Phaff and Miller, 1961), to Lissocephala or to
both is still unknown. Finally both the mature third instar Lissocephala
larvae and the newly emerged female fig wasps leave the receptacle at the
male syconial phase. In most figs, the syconium remains closed during the
entire floral development. At maturation the only exits available are those
tunnels—e.g., two in F. vallis-choudae, six in F. elasticoides and one in many
other species—bored by the male agaonid wasps. In a few fig species, such
as Ficus exasperata, a natural opening of the ostiole occurs at male phase,
forming a natural exit for the escape of the agaonids (Fig. 2h). In response to
the fig inflorescence enclosure, the ovipositing fig wasp has developed
behavioral mechanisms which enable it to penetrate these imbricated bracts,
and Lissocephala larvae, by mimicking the behavior of the fig wasps, also
gain entry to the immature receptacle of the fig by this means. Lachaise ez al.
(1982) suggest that the Ficus-specific Lissocephala species have attributes
that match those of the obligatory pollinator fig wasp, thereby countering
the host’s protective devices. In the less specific Lissocephala the relation
with the fig wasp is less evident. The entry is delayed in the interfloral phase
and the exit may occur when the fig has fallen down to the ground.

F. EcorogicaL SuccessioN IN FiGs AND OvIPOSITING F1G
DROSOPHILIDS
Fig-breeding drosophilids are specialized to a particular period of the
successional stages of the fig. The Lissocephala species oviposit in the green
immature syconium while the Drosophila fima group species oviposit in late
ripe fallen figs. Opportunistic Drosophila and Zaprionus species oviposit in
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the intervening period, separating both specialist groups. The last Drosophila
emerge from the dry remains of the receptacle on the ground (Figs 4 and 7).
In addition to morphological defenses against herbivores, the fig is assumed
to contain a “double or multibarrelled” chemical defensive system. We
suggest that figs utilize toxins in their immature stage, owing to the
protective requirements for seed setting, and use generalized digestibility-
reducing systems, like tanning, subsequent to floral maturation, so as to
protect against seed predation. The basic assumption of the occurrence of
toxins in immature syconia comes from the very small number of insects,
generalists as well as specialists (i.e. pyralid moth, fig weevil), feeding on the
receptacle wall off immature figs. Significantly, no drosophilids exploit early
svconia as a larval food supply. By gaining entry to the fig cavity like the fig
wasp, Lissocephala larvae override the toxicological barrier of early
immature figs. Such behavior does not imply the need of any detoxification
mechanisms since that Lissocephala larvae feed on yeast, and not on the plant
tissues. By contrast, fig specialization may have evolved in the fima group
species, probably because all postfloral syconia, regardless of the fig species,
display similar digestibility-reducing systems and, therefore, provide a
highly predictable resource. Conversely, specialization might not have
evolved in the receptacular wall of early immature syconia as a food resource
for drosophilid larvae, probably because the toxin defensive pattern may
differ in different species of figs, and herbivore specialization requires high
predictability in plants and plant tissues (Rhoades and Cates, 1976).
Generalist species of drosophilids breed in mid-succession where the
presumably decreasing gradient of toxin concentration and the increasing
gradient of digestibility-reducing substance are assumed to cross.

The expectations mentioned above are supported by the evidence that the
specialization pattern in the succession is similar in all fig species, even
though the succession of the ovipositing drosophilid species may be more or
less truncated. Owing to the ability to recognize clearly equivalent
successional stages in different fig species, it was possible to gather
information bearing on the actual number of eggs in a sort of pre-competi-
tive universal succession (Fig. 7). This is somewhat theoretical (pre-compe-
titive) since it is made from a series of completely realized (post-competi-
tive) successions observed in different fig species with varying succession
length. The entire process of fig receptacle succession takes from 8 to 15
weeks depending upon the particular fig species. The striped asymmetrical
bell-shaped curve corresponds to the total number of eggs laid by all the
species of drosophilid pooled together, i.e. the resource utilization curve of
the drosophilid community (Lachaise ez al., 1982).

Generally, a high carbon dioxide content in the internal atmosphere of
fruits inhibits ripening, whereas its depletion promotes ripening (Burg and
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Burg, 1965). If the green immature syconium is pierced before complete
floral development, for instance by larvae of the fig weevil, depletion of inner
atmosphere will result in an early and abortive fall and the death of the fig
microcosm. Thus, depletion of carbon dioxide separates two different
events in the life history of the fig, each of them resulting in a resource
gradient. The composition and diversity of the fig-breeding drosophilid
community breeding in the outer exocarpic wall change drastically with the
successional changes in the syconium. The modification of the environment
is caused by the fly species themselves which require preparation of their
substrate by the earlier species, making the succession order obligatory.
Therefore, this order of ovipositing species is constant whatever the
duration of the succession and, apparently, independent of the fig species.

G. PopuLATION TRAITS OF BEHAVIOR OF F1G-BREEDING
DRrosoPHILIDS IN RELATION TO TRrAITS OF FIGs

According to Feeny (1975), plant species which are rare, ephemeral, or both,
are assumed to be “‘hard to find” by insect herbivores. Chemical defenses of
such plants are likely to be diverse and qualitative (toxins). Plant species
which are abundant or persistent, or both, are, by contrast, “bound to be
found” by insects both in ecological and evolutionary time; such plants
appear to have evolved quantitative barriers (e.g., large amounts of
unspecific chemicals such as tannins). Both kinds of anti-herbivore
defensive strategies are expected to represent divergent evolutionary
barriers, accounting for the achievement of generalization, as well as
specialization, as best adaptive strategies in phytophagous insects. Rhoades
and Cates (1976) further argued that escape in space and time is more
effective against specialist herbivores than against generalist herbivores,
because specialist herbivores have no alternative food source. For a
generalist herbivore, on the other hand, the predictability and availability of
any individual resource is of less consequence, since a generalist can
opportunistically utilize whatever resource happens to be available.
Lachaise et al. (1982) discuss this ecological situation of fig-breeding
drosophilids in the light of the ideas of Feeny and of Rhoades and Cates.
Some consideration of the phenology and predictability of fig production is
therefore required to understand the strategies of resource utilization of the
flies. A detailed discussion of fig phenology can be found in Janzen (1979a
and exhaustive references therein). Due to the strict dependence of figs for
pollination by specific agaonid fig wasps, fig species have evolved
demographic features which favor the continuous development of these
symbionts all year round in the tropics. Usually, there is in every fig
population a continuous production of figs. Hence, in any particular area,
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some fig trees of the same species are always in a receptive stage. A fig
population may be found with syconia in all phases of development,
although on any one tree all syconia are roughly of the same stage (Ramirez,
1970; Janzen, 1979). Few studies (Hill, 1967a; Medway, 1972; Morrison,
1978; Janzen, 1979a) show how often a single tree fruits. Janzen (1979)
concludes that most studies show that there are fig-trees in fruit somewhere
in the population throughout the year. Such a study has been conducted in
the lowland evergreen rainforest of Tai in southwestern Ivory Coast by
Lachaise and Couturier (personal communication) with the aim of
determining the availability and predictability of a multi-fig species
community as a larval food resource for drosophilids.

1. Habitat patchiness

Fig species may live in somewhat different habitat patches. For example,
Ficus sur Forsskal is typically a savannah fig-tree and is absent from
evergreen rainforests (Fig. 2, b and c). Therefore it only occurs within
forested areas in old fallow lands or plantations. There it cohabits with F.
kamerunensis Mildbraed and Burret and F. ovata Vahl. F. elasticoides De
Wildeman, F. saussureana A. P. de Candolle, F. [yrata Warburg, F.
macrosperma Mild. and Bur. and F. polita Vahl live in primary forest. F.
vogeliana Miquel is confined to Marantaceae swamps within semi-deci-
duous or evergreen rainforests. F. asperifolia Miquel is characteristically a
riparian fig-tree, growing in easily flooded habitats; its branches usually
hang above water and their mature receptacles usually drop into water.
Accordingly, the late fig-succession is generally curtailed, accounting for the
absence of the fima group of Drosophila from this fig species (Table I). Other
species of fig such as F. exasperata Vahl, F. lutea Vahl, F. mucuso Ficalho, F.
recurvata De Wildeman are located in second growth patches. These habitat
preferences provide strong habitat-patchiness for the most specific Lissoce-
phala or for Drosophila sycovora.

2. Resource predictability

These species of fig display quite different demographic strategies, from
continuous to discontinuous fruiting, with a variable number of fruiting
cycles per year. Continuous fruiting within a single fig-tree occurs in both
Ficus sur and F. vogeliana and may occur periodically in F. asperifolia.
Figure 8 shows, for some examples of individual trees, how the successive
fruitings are or are not linked with one another. Only the link between
immature periods is important for the demographic attributes of both figs
and pollinating fig wasps. But the overlap of immature and post-mature
successional stages is of concern for the changes in fig drosophilid
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community and the demographic attributes of flies. A broad overlap occurs
in F. sur so that each tree produces 13 fruiting cycles per vear in the
evergreen rainforest clearings. There is an unexpected decrease in fruiting
overlap in this species living in unburned preforest savannah areas. Indeed,
in the Lamto savannah, where denser populations exist, each individual tree
shows only eight continuous fruiting cycles. Though all are continuously
fruiting, the trees in the same locality usually show asynchronized
development. Moreover, in the open grass savannahs of Lamto, which are
burned every year, the fruiting periods may be drastically reduced in
number and completely separated. Ficus vogeliana seems to fruit con-
tinuously five times a year. In these three species of fig the opportunity often
occurs for emerging fig drosophilids to find a receptive stage on the same
tree.

The opposite strategy is a single fruiting cycle per year with asynchrony
in fruiting between trees yet strongly synchronous fruiting within trees.
This strategy is seen in F. ovata, and may be the rule in F. kamerunensis and
F. thonningii in June—July—August suggesting some yearly periodicity, at
least in the second growth habitat of Adiopodoumé (Ivory Coast). For these
fig-trees the chances are that when one tree is in fruit, few others in the
vicinity will also be in fruit. The population of specialist fig drosophilids will
therefore be divided among a low number of fruit-bearing trees. Conse-
quently, specialist fig drosophilids will be more densely packed, thereby
favoring sex encounters in rare species. This implies that the most specific
Lissocephala must be extremely efficient at locating their fig trees. In
contrast, only medium range search flights are required in those Lissoce-
phala species, like L. sanu, and other fig Zaprionus and fig Drosophila species
which can exploit any fig.

Other demographic patterns exist in other fig-species, which may show
two or more disjunct fruitings per year. The fruiting periods may vary
greatly from one year to another; selection has favored both predictability at
the population level, by promoting lack of periodicity, and unpredictability
at the individual level. Thus, F. macrosperma has two fruitings annually and
F. recurvata at least two widely separated fruitings per year.

3. Resource availability

Since the time of the substrate succession, from early immature inflores-
cence to the dry remains of the receptacle on the ground, varies greatly from
7-8 weeks in F. asperifolia and F. thonningii to 14-15 weeks in F.
macrosperma and F. saussureana, the question arises as to whether the former
support fewer fig drosophilid species than the latter. This might result from
the exclusion of some members within the different groups or from niche
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compression. The data remain insufficient to settle this problem, but the
varying duration of the fig successions and change in the ratio of immature
to post-mature stages provides fruitful material for devising testable
hypotheses in competitive displacement. Figure 8 gives the phenology of the
figs simultaneously available to fig drosophilids in different localities. At
each fruiting the relative durations of the different successional stages are
figured. Vertically, each column gives a crude idea of how the spatial fig-tree
patchiness is at a given time. Although the recording of trees is limited, the
sample of emerging fig drosophilids is equivalent to the sample of figs.
Hence it is possible to correlate the number of different successional stages
available at each time in a given habitat to the relative proportion of fig
drosophilid species (Fig. 9). These correlations emphasize further the
constancy of the nutritional specializations of the flies or the fly groups to
one or more successional stages. Were competitive displacements a reality
they should be expected to increase or decrease species packing, either by
niche compression/release or by species invasion/exclusion, rather than to
allow one successional group to replace another.

4. Demographic implications of fig-dependence in drosophilids

In view of those aspects of the biology and phenology of figs we have
described, the specialization gradient involving fig-breeding drosophilids is
expected to have demographic implications. Most importantly the absence
of continuous fruiting within a tree results in the drosophilids having to
disperse.

In order to verify the demographic implications of fig-dependence,
Lachaise (1979a, 1983) showed experimentally that the greater the degree of
specialization on Ficus, the more delayed is the reproductive effort and the
lower is the fecundity (Fig. 10). Thus, generalist drosophilid species (e.g.,
D. malerkotliana) which exploit figs, among many other resources in a
fine-grained manner, show a reproductive pattern with short adult
immaturity and high fecundity. High reproductive effort is concentrated in
a few age classes. In contrast, specialist fig drosophilids exhibit long adult
immaturity and lower fecundity. Considering the degree of host-fig
dependence, different demographic patterns exist. Thus, in the fima group,
represented in Fig. 10 by Drosophila fima, the period of adult sexual
immaturity is shorter than in Lissocephala species but longer than in all other
species of Drosophila or Zaprionus. Since all ripe fallen figs are favorable to
the fima group species, regardless of the host-fig species, search flights
between suitable fig-trees are doubtless shorter than in most Lissocephala.
The species of Lissocephala delay reproductive effort as the degree of their
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host-fig specificity increases. In L. disjuncta adult sexual immaturity is
about six times longer than the mean time of immaturity of the fig
Drosophila or Zaprionus species.

As discussed above the most highly fig-specific Lissocephala species,
which breed inside the closed immature fig cavity, display demographic
features which tend to match those of the obligatory pollinator fig wasp.
Owing to their common specificity to the same host-fig, these Lissocephala
and the wasps probably display similar flight behavior and flight ranges.
Joseph (1966), Ramirez (1970) and Janzen (1979) give evidence that agaonid
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F1G. 10. Hyperbolic relationship between fecundity and the maximal time during which the
reproductive effort can be delayed (log; scale) in 21 drosophilid species living in southern
Ivory Coast. These are represented by clouds which include the intraspecific variability.
Each point within a cloud represents the mean value per population given with the 959,
confidence limits. (1) Drosophila melanogaster; (2) Zaprionus ghesquieres; (3) D. iri; (4) Z.
sepsoides; (5) D. malerkotliana; (6) D. tsacasi; (7) D. greent; (8) D. yakuba; (9) D. teissiert; (10)
D. bakoue; (11) D. burlai; (12) D. nikananu; (13) D. erecta; (14) Z. collarti; (15) Z. tuberculatus;
(16) Lissocephala sanu; (20) L. couturieri; (21) L. disjuncta. The eggs figured are those of
species of the fig drosophilid community living on Ficus sur on the Ivory Coast. Two
additional eggs (Lissocephala lebou and L. diola) of the fig drosophilid community living on
Ficus sycomorus s.sp. gnaphalocarpa in Senegal are included for comparison (after Lachaise,
1979a).

fig wasps may move distances of many kilometers between individual fig
trees. These demographic strategies of both specific Lissocephala and fig
wasps are assumed to be of the same kind. For example, the delayed
reproduction which is seen in Lissocephala (Lachaise, 1979a) is also
suggested by Janzen (1979) for the wasps: ... newly emerged fig wasps
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may have the behavioral trait of having to fly or otherwise delay before they
can (will) attempt to enter a receptive fig”’. Because of limiting food supply,
or of a physiological inability to exploit resources in excess, any organism
has a certain and limited amount of time, matter and energy available to
devote to foraging, growth, maintenance and reproduction (Cody, 1966;
Levins, 1968; Pianka, 1974). The way in which a drosophilid species
allocates these resources among various conflicting demands depends on the
degree of specialization of the fly population and of its response to host-plant
patchiness and predictability. Delaying reproduction allows resources to be
diverted toward search flights for more adequate breeding sites. The greater
the interpatch search time expected, the more delayed will be the
reproductive effort (Pianka, 1974). Specialist herbivores must allocate time
and energy to a search for their host plant. The more ephemeral the
resource, the greater will be herbivore mortality during the search (Rhoades
and Cates, 1976).

Regarding their degree of specialization on Ficus, fig fly species exploit
the changing environmental mosaic of rainforests or savannahs in either a
fine-grained or in a coarse-grained manner (Wiens, 1976).

In response to their dependence on Ficus and to their host’s patchy
distribution, drosophilid species have evolved different demographic
strategies. In Afrotropical drosophilids, as in some Neotropical butterflies
(Gilbert and Singer, 1973, 1975), dispersal characteristics of populations are
attuned to local patchiness. Female Lissocephala spend the greater part of
their immature adult life-span in searching for suitable Ficus patches
containing figs in the appropriate receptive immature stage. Much energy is
thus expended in flying between patches. Ficus patches can be regarded as
“islands” in a “‘sea” of unsuitable habitats (Janzen, 1968, 1973).

The specialist drosophilid species which exploit-both early and late fig
successional stages display similar demographic traits, i.e. low reproductive
rate and long sexual immaturity as adult females. Thus, they differ
fundamentally from the generalist species which colonize opportunistically
the medium-succession and which show a short adult immaturity period
and a high reproductive rate. The duration of pre-adult development, and
longevity of mature females, appear to be uncorrelated with the successional
stages (Fig. 11). Clearly, early and late successional stages furnish a poorer
food supply than intervening stages. The causes and major trends of the
demographic traits of successive fly species might also, therefore, be found
in the nutritional qualities of the changing substrate.

The amount of the resources allocated to host-plant search activities will
depend on the relationship between the cost of such diversion versus the
benefit derived from it. The less frequent a host-plant, the less benefit will
be gained from the diversion of energy to search for it. Reciprocally, the
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more renewable and predictable a host-plant, the more likely an organism
will be to increase its fitness by diverting some of its resource in searching
for it (Pianka, 1974; Rhoades and Cates, 1976). This is probably also the
reason why most fig-dependent drosophilids are not restricted to any single
species, since mixed communities provide abundant, constant and, hence,
predictable resources. Furthermore, it should be borne in mind that those
Lissocephala species which presumably divert resources from reproduction
per se to host plant search flight are also those which allocate resources to egg
protection (Fig. 10).

ITI. The Breeding Site Arrays in Africa

In this section we will present as complete a picture as possible of the array
of breeding sites used by tropical African drosophilids.
Table IT summarizes all the presently available data on breeding sites of

)

endem. — widespr.
endem.+ widespr.

DROSOPHILIDS 1*

1
nat. —int.

HOST-PLANTS ' * Satvmt.)

N

F1G. 12. Regression of the proportion of endemic species of drosophilids on the proportion

of native host-plants in tropical Africa. The host-plants of the 81 species of drosophilids

involved are mentioned in Table II. The numbers near the points give the number of

drosophilid species in each class defined by the proportion of native host-plants and
introduced ones.

F1G. 11. Demographic properties of the fig drosophilids reared from different successional
stages of Ficus sur in the Ivory Coast. Dotted diagrams underline the fig-dependent species
(see legends of Fig. 4 and 7).
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African drosophilids. Ten categories are recognized: A. fruit breeders; B.
flower breeders; C. fungus breeders; D. leaf miners and stem borers; E.
decaying trunk, branch and tuberculous root breeders; F. commensal
breeders within cercopid spittle mass; G. commensal breeders within
solitary bee nests; H. predators of Homoptera; I. aquatic life and predation
in the simulivora group species; J. decaying animal organic matter breeders.

Clearly, the African endemic drosophilids, like the Hawaiian endemics
(Heed, 1968; Montgomery, 1975) and Australian endemics (Bock and
Parsons, Chapter 7, Volume 3a), have highly diversified larval habits and are
not the homogeneous group of saprophagous organisms commonly
assumed. So many adaptive pathways have evolved in mainland Africa that
many quite unexpected breeding sites might well remain to be found.

To stress the colonizing abilities of species, Table II specifies whether the
host-plants used by fruit-breeders and flower-breeders are native or
introduced. Figure 12 shows a remarkable correlation between flies and
host-plants, i.e. those flies which are widespread also breed (or only breed)
in introduced host-plants. The term “widespread” includes widespread,
paleotropical, pantropical, subcosmopolitan and cosmopolitan species (see
Parsons and McDonald, 1978; David and Tsacas, 1981). Similarly, Parsons
(1977b) found in Australia that resources in rainforests are fully utilized by
endemic species, so preventing colonization by cosmopolitan species.
Furthermore, few endemic species have emerged from rainforests, empha-
sizing that suitable resources probably do not occur outside their historic
habitats for species not coming to fruit bait.

Species with high colonizing abilities, such as D. melanogaster, D.
simulans, D. busckii, D. latifasciaeformis and Z. collarti, invade indifferently
both introduced and native host-plants; their abilities to tolerate a
permanent host switch is due to their opportunistic behavior. By contrast,
endemic species breeding only in native host-plants display both a more
specialist behavioral pattern.

A. FRUIT-BREEDERS

Plant species whose fleshy fruits are not colonized by any drosophilid are
rare in the tropics. In contrast to temperate areas, where fruits are relatively
rare and ephemeral (Carson, 1971; Begon, 1975 and Chapter 17, Volume
3b), tropical Africa and other tropical zones appear to be characterized byan
“unlimited” supply of fruit available for drosophilids. Fruits may be both so
highly productive and predictable a resource that species packing is a major
feature of the tropics. If competitive displacements occur, they doubtless
rarely lead to competitive exclusion from the resource patch including a
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number of food items; so that the question to be raised is rather that of food
item partitioning.

Many tropical fruits support species packing of drosophilids because of
the length of time theyv remain favourable to larval growth. Southwood
(1976) stressed that the significance of this duration stability was dependent
on the relationship between the organism’s generation time (1) and the
length of time the substrate remains suitable (H): “In those species where
7/H approaches unity, one generation cannot affect the resource of the next;
there will be no evolutionary penalty for overshooting the carrying capacity
of the habitat. Those species are then exploiters, opportunists. Conversely,
for those animals that occupy long-lived habitats where the carrying
capacity (K) is fairly constant, significant overshooting will lower K, and
will adversely affect subsequent generations”.

Thus, some African fruits last no longer than one Drosophila generation
(e.g., Cissus, Coffea, Psidium, Spondias or Staudria), whereas some others
may, potentially, support many consecutive generations (e.g., Anonidium,
Artocarpus, Borassus or Pandanus). However, as was discussed in the first
section, due to the foraging behavior of the larvae, each generation makes
the substrate unsuitable for the next one.

1. Seasonal specialization in Drosophila erecta

Drosophila erecta 1s one of the eight closely related species of the
melanogaster subgroup living in the Afrotropical region. Its narrow
association with the screw-pine Pandanus candelabrum (Monocots, Pan-
danaceae), previously seen in Lamto in the pre-forest Ivory Coast (LLachaise
and Tsacas, 1974), is now confirmed by new records from the southern
Ivory Coast (Rio ¢z al., 1983). The geographical range of erecta includes the
Ivory Coast, Nigeria, Cameroon and Congo, thereby matching the

F16. 13. (a) Packing of adults of the Drosophila aterrima species complex within the corolla of
Hibiscus rostellatus (Malvaceae). (b) Larvae of D. aterrima species complex within the corolla
of Ipomoea digitata (Convolvulaceae). (c) Larvae of Zaprionus badyi on the myophilous
stigma of Rothmannia whitfieldii (Rubiaceae) in the riparian forest gallery of the River
Bandama. (d) Flowers of R. whitfieldii and breeding methods. (e¢) Spittle-mass of the
spittle-bug Piyelus grossus (Fab.) (Cercopoidea, Aphrophoridae) yielding two last instar
larvae head down; the spittle-mass which drips unceasingly is a common breeding site for
Leucophenga proxima. (f) Hexagonal figures due to appressing of the drupes which make the
infrutescence of Pandanus candelabrum (Pandanaceae). (g) Stilt roots of P. candelabrum (Pc)
in the forest gallery of a temporary tributary of the River Bandama. (h) General view of the
entire infrutescence. (i) Drupes loosing in an older stage. De: Drosophila erecta; Zg: Zaprionus
ghesquierei; Zt: Zaprionus tuberculatus. (Photographs after D. Lachaise from the Guinean
zone of the Ivory Coast, except (e) which is after M. Boulard).
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Guineo-congolese distribution of its host plant. Neither the fly nor the
Pandanus extend to the east over the Rift Valley.

The erecta—Pandanus association 1is perennial but not permanently
obligatory. The records on erecta lead to the concept of “seasonal
specialization”. Rather than a species status, specialization appears to be a
generation-dependent allocative option. Those generations appearing when
Pandanus fruits are available are strictly and obligatorily dependent on
Pandanus for breeding, whereas those starved of Pandanus fruit show, all
things considered, a more opportunistic behavior. Rare and isolated
individuals of erecta can occasionally be caught in sites of Pandanus devoid
of fruits, as was observed in Lamto and Tai in the Ivory Coast and on the
Kounden plateau in Cameroon (Rio ez al., 1983). Regarding the very low
level of population size in those generations starved of Pandanus, one can
expect that the energetic cost paid by the transitional generations is high.
The extension of the host plant range might result in an appreciable increase
in metabolic costs, for example by tolerating a greater range of defensive
chemicals present in a wider array of host plants. This probably explains
why the specialization strategy has been selected and since maintained.

The populations of P. candelabrum live in swampy riparian habitats (Fig.
13g). Generally, Pandanus-patches show a coarse-grained distribution that
involves a similar discrete distribution in the populations of erecta.
Moreover, considering that erecta has also greater sensitivity to dessication
and high temperatures than other melanogaster subgroup species (Stanley et
al., 1980), one can expect between-population migration and then gene flow
to be limited. Nevertheless, no differences have been seen between
populations, at least at the chromosomal and reproductive levels (Rio et al.,
1983).

The decaying fruit of Pandanus may remain suitable for drosophilids as a
larval resource for about two months. However, due to the changes of the
substrate, the ovipositing species of flies replace one another as was shown
for figs. Drosophila erecta oviposits in the early decaying fruit while D.
latifasciaeformis, the most colonizing Scaptodrosophila on the Ivory Coast,
lay eggs in the late successional stages. Within the same syncarp of Pandanus
some drupes evolve more rapidly than others. This provides a micro-mosaic
of drupes in different stages of decay (Fig. 13, f and h). From this a
remarkable within-fruit substrate patchiness may occur that allows intra-
resource partitioning between erecta and latifasciaeformis in medium
succession.

Synchronism in the phenology of fruit production in P. candelabrum was
observed during four consecutive yearly cycles (from 1980 to 1983) in four
distant localities in southern Ivory Coast (Grand-Bassam, Lamto, Tai and
Sakreé) separated respectively by 186, 275 and 408 km. Concomitant rearing
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of erecta was obtained from the syncarpic fruits of the different geographic
patches of Pandanus (Rio et al., 1983). Overall between-patch synchronism
in fruiting in the southern Ivory Coast provides a short-term predictability
for the benefit of four to five consecutive generations of erecta. When this
short-term predictability has worn away, the strict specialization pattern of
the fly is no longer maintained. However, continuation of the status of
specialist at the species level is likely to be accounted for by long-term
predictability due to yearly periodicity in Pandanus fruiting. Consequently,
the prerequisite promoting the evolution of seasonal monophagy in erecta is
met. Hence, it can be more clearly understood why specialization, as an issue
of an evolutionary pathway, does not necessarily lead to a dead end.

2. The association of Drosophila sechellia with Morinda citrifolia

The second of the eight species of the melanogaster species-subgroup to
provide a highly specialized larval habit is the newly described D. sechellia
(Tsacas and Bachli, 1981). The species is only known from the granitic small
island of Cousin in the Seychelles archipelago. After David (personal
communication), who collected seckellia, the assumption can be made that
its range is larger and very likely includes at least Cousine and Aride islands,
which display similar ecological features. On Cousine islet, sechellia is
strictly restricted to the fruits of the Indian mulberry tree, Morinda
citrifolia, for breeding. This rubiaceous plant also grows on Cousine and
Aride islands.

The Indian mulberry tree is a small tree or shrub growing to 6 meters in
height. Due to the striking adaptation for dispersal of its seeds—by floating
in sea~water—A. citrifolia shows a wide geographical range throughout
south eastern Asia, from India to China, Australia and the Pacific islands. It
is worth noting that no species of Drosophila were found to inhabit the fruits
of M. citrifolia at a few places around Varanasi in the gangetic lowland in
north eastern India (Gupta, personal communication).

On Cousin islet in the Seychelles the Morinda tree grows on granitic sand
conglomerated with guano, making dense bushes in the neighbourhood of
the sea. M. citrifolia produces composed fruits with a smell like decaying
cheese which are very conducive to sechellia breeding. Of 1458 adult flies
emerging from Morinda fruits, David (personal communication) obtained
1275 sechellia and 183 individuals of the widespread and expanding D.
malerkotliana. This author further indicates that the specialization of
sechellia to M. citrifolia is also simply evidenced by comparing the fly species
found on three adjacent traps baited, respectively, with Morinda, banana
and coconut palm cabbage. The results clearly show that sechellia
concentrates almost exclusively on Morinda, whereas malerkotliana fre-
quents any of the three baits indifferently.
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Finally, David (personal communication) emphasizes that neither D.
simulans nor D. melanogaster live on Cousin islet, and that sechellia is lacking
in the large Mahé island where simulans and melanogaster are locally present
in wild or domestic areas respectively.

3. Adaptive radiation of Scaptodrosophila on palm-trees

The subgenus Scaprodrosophila has achieved a wide adaptive radiation on
palm-trees in tropical Africa (Burla, 1954, 1955; Lachaise, 1975, 1979a).
Thirteen species belonging to this subgenus, ten of which are endemic, were
found feeding on all parts of palm trees: fruits, sap-exudations, palm-
cabbage, decaying trunk mold. Drosophila latifasciacformis, D. bangi and D.
saba were found on “Ronier” palm-tree (Borassus aethiopum), on oil-palm
tree (Elaeis guineensis) and on different Raphia palm-trees. Burla (1954)
found the following species together on Raphia in the southeastern Ivory
Coast: saba, sp. aff. pugionata (as pugionata), latifasciaeformis, senufo, anyi,
bangi, uebe, mbettie, framire, triangulifer, eoundo (as brunnea), agamse and
lambi.

Species of Scaptodrosophila may produce large swarms on palm-trees.
Thus, Burla (1954) noticed large numbers of agamse on oil-palm trees and
Lachaise (1975) stressed that 999, of the multi-species drosophilid
community, adults as well as larvae, living on Rénier palm-tree belonged to
a single expanding species, latifasciaeformis. Because little attention has
been focused on African Scaptodrosophila, only latifasciaeformis has been
found to breed in the fruits of its host-palm tree; the breeding-sites of the
twelve other palm-tree Scaprodrosophila species are still conjectural.

Lachaise (1975) estimated that 10° drosophilid larvae, mainly latifasciae-
formis, were produced per year for a female palm-tree bearing 100 fruits.
This is nearly the same production as on Ficus sur bearing 3000 fruits
(75+10* larvae) (Lachaise, 1976). Both trees share the same habitats in the
Guinean pre-forest savannahs in the Ivory Coast. Since palm-trees fruit
once a year and Ficus sur continuously eight times a year, the production is
respectively 10° and 6°10° larvae per tree per year, assuming constant
production and mortality. The densities of both trees change greatly from
one habitat-patch to another. In forested savannah, where both trees are ata
relatively high density, i.e. 5-45 female palm-trees per hectare (Vuattoux,
1970) and 30 fig-trees per hectare (Menaut, 1971 and personal communica-
tion), the overall production of drosophilid larvae per hectare might be
around 108 larvae. Due to the differences in density, palm-trees appear far
less productive than fig trees in forested savannahs. However, since fig trees
are absent from open grass savannahs, which are burned every year,
paim-trees are probably as productive in the pre-forest grove of the
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Ivory-Coast. In Ronier palm-groves D. latifasciaeformis acts as an invader of
the monoculture. Of 176,388 specimens of 105 species, recorded in a 2000
hectare area within a palm grove during a four-year period, 95,156
specimens, i.e. 549, were D. latifasciaeformis (Lachaise, 1979a).

Borassus displays unpredictable and asynchronous between-tree fruiting
(Porteres, 1964-1965; Vuattoux, 1968), so that Borassus fruits have a high
predictability as a larval food resource for D. latifasciaeformis throughout
the year. Therefore, the Lamto population of this opportunistic Scaptodro-
sophila species behaves as a specialist in contrast to the forest populations.

B. FLOWER-BREEDERS

In view of the chapter by Brncic on flower-breeding drosophilids (see
Chapter 33), we will only report data involving the African species and will
present some new unpublished records on those species.

1. African Hibiscus-breeding drosophilids

The genus Hibiscus (Malvaceae), a genus of two hundred species in the
world, is most richly represented in mainland Africa and Madagascar.
Letouzey (1970) reported the occurrence of 50 native Hibiscus species from
Africa, mainly living in the Sahelian and Sudanese zones.

Hibiscus-breeding drosophilids provide a remarkable ecological conver-
gence in the tropics. Cook er al. (1977) found a new species of
Scaptodrosophila, D. hibisci which was associated with flowers of two
Hibiscus species in tropical Australia. Larvae and pupae were found in one of
them. Since native Hibiscus species occur mainly in northern Australia other
host-Hibiscus are likely to be found.

In the evergreen rainforest of Dimonika in Congo, David and Vouidibio
(personal communication) found two sibling species of D. aterrima whose
larvae coexist within the flowers of the native Hibiscus esculentus and other
unidentified Hibiscus. Hence, with D. aterrima sensu stricto, which Burla
(1954) found as adults within H. sumatrensis (sic. probably H. surratensis!) in
the southern Ivory Coast, a complex of three flower-breeding sibling
species, at least, exist under the term aterrima. It is a matter of conjecture
whether the adults of the aterrima-like species found by Buruga and Olembo
(1971) within H. rosa-sinensis flowers in Uganda and by Lachaise (1974,
1979a) in H. rostellatus and H. asper in the Ivory Coast belong to one of these
three species or to further species (Fig. 13a).

In eastern Zaire, around Kivu-lake, Graber (1957) collected adults of two
closely related Scaptodrosophila species, D. ebenea and D. pseudoebenea,
from the large flowers of Hibiscus ludwigii. Occasional non-S captodrosophila
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were recorded from Hibiscus, e.g. D. sp. aff. ananassae, D. melanogaster and
D. simulans on H. rosa-sinensis (Buruga and Olembo, 1971) and D. reissier:
and Mycodrosophila sp. on H. rostellatus (Lachaise, 1974).

In most Hibiscus, e.g. H. ludwigii and H. esculentus, the flowers are
ephemeral, lasting not more than one or two days. As the flower grows older
during the day, it turns bronze and then red before dropping at nightfall.
Burla (1954) and Lachaise (1974) observed that a population of 50 flies of
Drosophila aterrima or a similar species lets itself become entrapped within
the flower as it quietly closes and fades at nightfall. As suggested by Cook et
al. (1977) this implies that any resource utilization must begin soon after
colonization on the day that the flowers are open, and that the colony of a
flower is stable throughout the day. As suggested by Graber (1957) the
females may await the fall of the flower they inhabit before ovipositing.
Further larval development occurs in the decaying fallen flowers, so that the
time the resource remains suitable for drosophilids is extremely short. Since
Graber (1957) found adult flies of D. aterrima, D. ebenea and D. pseudoebenea
to have intestines full of pollen, it appears likely, as stressed by Cook ez al.
(1977), that fresh Hibiscus flowers provide courting and feeding sites for the
adults, as well as a resource suitable for larval development once the flowers
begin to decay.

It is unlikely that African flower-breeding Scaptodrosophila display
host-specificity, or even host-dependence, for Hibiscus. The adaptive
breeding site shift to Hibiscus in many parts of the world is due to the great
number of Hibiscus species available as resources in all tropical areas rather
than to the suitability of this breeding site. The flowering time is very
restricted in the course of the year and a strictly Hibiscus-dependent fly
population could not survive the year around. Similarly, Cook et al. (1977)
emphasized that Australian Hibiscus flowers were short-lived resources,
maintaining populations for from one week to three months. This implies a
continuous process of colonization and raises the problem of what resources,
if any, are utilized when Hibiscus are not flowering. Burla (1954), in the
Ivory Coast, reported the continuous breeding-site transfer of D. aterrima
from Hibiscus to Ipomoea flowers and vice versa.

Furthermore, Couturier et a/. (1983) showed that the species of the
aterrima complex also breed within the tubular-like flowers of the cotton
(Gossypium) and within /pomoea-like Tubiflorales.

2. African Tubiflorale-breeding drosophilids

The Tubiflorales are an order of gamopetalous dicots with tubuliform
corolla which provide suitable breeding sites for drosophilids. Indeed,
flower breeding drosophilids have been bred from five Tubiflorale families:
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Convolvulaceae (Ipomoea), Solanaceae (Cestrum, Datura, Solanum), Big-
noniaceae (Markhamia, Spathodea) and Acanthaceae (Aphelandra, Thun-
bergia) mainly in the Afrotropical and the Neotropical regions (see Brncic
this volume, and references therein).

In tropical Africa the great flower bindweeds of the genus /pomoea yield
approximately the same flower-breeding species that exploit Hibiscus
flowers, so that Jpomoea and Hibiscus appears to substitute for one another
indifferently as a fly resource. Drosophilids have been found within the
flowers of four Ipomoea species (1. digitata, I. involucrata, I. tenuirostris and
I. tricolor). Of these only I. involucrata is native, the others being
introduced. In the Ivory Coast adults of the D. aterrima species complex
were found within the flowers of 1. involucrata in the evergreen rainforests of .
Banco by Burla (1954) (as “I. involvuata”) and of Tai by Couturier et al.
(1983), and of I. digitata in the Lamto savannahs by Lachaise (1974) (Fig.
13b). Larvae were found in /. involucrata from Tai and in 1. digitata. In
Uganda, Buruga (personal communication) found adults of the aterrima
complex within the flowers of 1. tricolor.

Buruga (1976) also bred Zaprionus collarti from I. tricolor and Burla
(1954) mentioned a Zaprionus close to Z. neglectus in the flowers of /. digitata
near Abidjan.

In the vicinity of the Kivu-lake, Graber (1957) recorded adults of
Drosophila suma in I. tenuirostris (reported as I. gracilior). In Uganda,
Buruga and Olembo (1971) also mentioned the occurrence of D. sp. aff.
ananassae, D. lambi, D. seguyi, D. suma and one species of the Zaprionus
vittiger complex in 1. tricolor, but the presence of their larvae in the flowers is
somewhat equivocal.

Among other Tubiflorales that host drosophilids are the flowers of
Solanaceae. Burla (1954) recorded adults of D. aterrima within Datura sp.
flowers in southern Ivory Coast and Buruga (personal communication)
those of sibling species of the aterrima complex from the trumpet-shaped
flowers of the small tree Datura candida in Uganda. There Buruga and
Olembo (1971) also found D. melanogaster (or simulans) in the native
Solanum incanum.

The Bignoniaceae are mainly trees or shrubs native to tropical Africa and
produce large tubuliform flowers (10~12 cm) in the genera Spathodea and
Markhamia. The “African tulip tree” Spathodea campanulata is a small tree
living in wet rainforest and in old grove areas (Letouzey, 1970). Its fiery red
flowers grow in<tircular groups, around closely crowded buds. These buds
develop a few at a time thus ensuring blooms the year around. S. campan-
ulata is, therefore, a relatively predictable breeding site for flower-breeding
drosophilids. Buruga (1976) bred members of the Zaprionus tuberculatus
complex in Uganda from these flowers (reported as S. nilotica).
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The vellow flowered Markhamia grow in forests or peri-forest savannahs
and is frequent in old groves (Letouzey, 1970). Once they fall to the ground
large quantities of decaving Markhamia flowers provide a suitable resource
for drosophilids. In the Kounden plateau (1400 m) in Cameroon Lachaise
(1979a) recorded that adults of Drosophila bakoue, burlai, latifasciaeformis,
prutnosa, simulans and triangulifer and of Neotanygastrella sp. B visit these
flowers, but only bakoue was found to breed there. Notice that no
“Bignonia”-breeding drosophilids are true flower-breeding flies. Attention
should be focused on the evolutionary significance of those drosophilids
which breed in fresh flowers and those which exploit fallen ones.

The last Tubiflorale to yield adult drosophilids from its flowers is
Thunbergia sp, a genus which is a widely cultivated plant in Africa and Asia.
This lianescent plant blooms almost continuously and produces funnel-
shaped flowers of five lobes in which adult Drosophila suma were found
feeding by Graber (1957) in eastern Zaire.

3. African Zingiberale-breeding drosophilids

The Zingiberales include families (Strelitziaceae, Zingiberaceae, Canna-
ceae, Marantaceae, Musaceae) whose fleshy flowers are among the most
favourable for drosophilid breeding. The adaptive radiation of flower-
breeding drosophilids on these monocots in the Neotropical region is one of
the most fascinating of co-adaptations between drosophilids and flowers
(Pipkin, 1964, 1966; Pipkin er al., 1966; see Brncic, in Chapter 33).
Referring only to Zingiberales, Pipkin ez a/. (1966) bred Drosophila from the
flowers of 13 Heliconia species, 5 Calathea, 3 Costus or Dimerocostus and 1
Hedychium. These authors emphasized the occurrence of a remarkable
gradient of host-specificity, and discussed its bearing on the evolutionary
history of both drosophilid and host.

The African Zingiberales from whose flowers drosophilids were reared all
belong to the family Zingiberaceae. The members of this family may bear
compact inflorescences apically to leaf-like stems, but most usually the
inflorescences grow directly from the rhizome rising in spikes or panicles
which appear to emerge from the earth. The most remarkable record is the
strict association of the black-winged Zaprionus vrydaghi and the high-
stemmed inflorescences of Costus spp. This plant—drosophilid association is
assumed to be strict since it was encountered in second-growth patches
within the semi-deciduous forests of Budongo and Mabira in Uganda
(Buruga, 1976), the Dimonika rainforest in Congo (Vouidibio, personal
communication), the Tai rainforest in the Ivory Coast (Couturier ez al.,
1983) and the Makokow rainforest in Gabon (Lachaise, personal communi-
cation. Moreover, this black-winged Zaprionus, which is constant (possibly
perennial) on C. afer inflorescences, has so far not been found anywhere else.
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In Tai, this Zaprionus shares this inflorescence with a flower-breeding
spinipes-like Drosophila.

Couturier ez al. (1983) showed that one fresh inflorescence can support at
least several successive generations of Zaprionus vrydaghi owing to the long
flowering duration. The compact inflorescence borne apically by a
two—three meter high stem is composed of about 30—40 appressed flowers
which blossom successively. The eggs are laid externally at the bottom of the
immature flowers in a permanent area of decaying tissues in which larvae
breed. Owing to the lack of pupae on the fresh inflorescence, pupation is
suggested to occur in the soil beneath the flower. The newly emerged adult
colonizes the newly blossoming flower and so forth. The mature flower is
mainly a shelter and probably a feeding site for the adults.

Larval development within decaying tissues of vegetables is fundamen-
tally different from larval development within flowers of Hibiscus or
Tubiflorales. Another example comes from W. M. Wheeler (1942) who
reported that H. von IThering bred a neotropical species of Drosophila from
larvae living in matter derived from the decomposition of vegetable
excrescences in an internode of Cecropia adenopus (Moraceae). These larvae
are more closely related ecologically to fruit-breeders or scavengers than to
true flower-breeders.

Also noteworthy is the association of a D. dyaramankana-like species with
this latter kind of stemless flower. Burla (1954) found adults of D.
dyaramankana in the flowers of Aframomum cuspidatum in southern Ivory
Coast, and Buruga and Olembo (1971) reared D. dyaramankana and a
sibling species of dyaramankana in those of A. sanguineum in Uganda. These
latter authors noticed that flowers collected in the wild forests or
forest/savannah mosaic yielded only dyaramankana-like species while
flowers obtained from cultivated areas supported additional species.
Lachaise (1974) bred dyaramankana-like species from the fresh flowers of
Kaempferia aethiopica, which grows at ground level in the hygrophilic
gallery forests of temporary streams in the pre-forest Ivory Coast.

Occasionally adults of other Scaptodrosophila, e.g. D. aterrima, D. lambi,
D. sp. aff. mokonfim, have been found in different Aframomum, Costus,
Kaempferia and Musa (see Table II). Four Zaprionus species have been bred
from native Costus flowers; Buruga and Olembo (1971) reared members of
the Z. tuberculatus and Z. virtiger complexes from C. spectabilis Lachaise
(1974) also reared a species of the Z. vittiger complex from the flowers of
Kaempferia aethiopica.

4. Eucalyptus-breeding Drosophila flavohirta

The saligna gum Eucalyptus grandis (Myrtaceae) is the most commonly
grown eucalypt in South Africa and the main source of honey in that
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country. Unnatural declines in honey production from this eucalypt have
occurred since the mid-1970s resulting in detrimental economic conse-
quences for bee-keeping. From this recognition, investigations were made
in order to find which factors might have an effect on the nectar secretion.
Tsacas and Johannsmeier (personal communication). These authors stress
that climatic factors were not responsible for the fluctuations in honey
production. By contrast, there is both circumstantial and positive evidence
that the diminished honey vields were due, to a greater or lesser extent, to
the presence in the flower cups of larvae of Drosophila flavohirta Malloch, a
“rare” species of the melanogaster group whose geographical range was
formerly restricted to Australia.

Tsacas and Johannsmeier (loc. cit.) indicate that flowers with Drosophila
larvae contain no nectar, whereas adjacent flowers of the same inflorescence
may be full of nectar if free of larvae. They therefore assume the larvae to
develop on the secreted nectar within the flower cup. This probably
represents the first clear evidence of a nectar feeding habit in Drosophila
larvae. Between three to ten small larvae can be found in a single saligna
flower; however, only one of them appears to develop successfully to
maturity. Puparia were found either in the cup of withered flowers or
adhering to the filaments.

Both young and old eucalypt trees yield larvae and adults of D. flavohirta.
According to the localities or the periods of the year the larval infestation
varies from 0 to 709, of the total number of flowers examined. Adult flies
were sometimes observed in large numbers in areas where larvae were not
found.

In addition to the records in Central Transvaal on Eucalyptus grandis,
Tsacas and Johannsmeier (loc. cit.) report the occurrence of flavohirta
larvae in the flower cup of a single E. paniculata flowering at the same time,
and of a few adult flies sitting on a flower of E. elata. By contrast, no flies
were found in E. maculata flowers. No insects are found when the flower
becomes dry. Outside Central Transvaal, a very small number of adults of
Aavohirta were found on E. cladocalyx in the Cape Peninsula.

Though Aavohirta has been observed to fly actively at relative low
temperatures (ca. 12°C), colder temperatures probably prevent flies from
breeding. In the warmest region surveyed in central Transvaal, E. grandis
flowers early in the season. When flowering ends, weather conditions and
the occurrence of potential alternative host plants are still conducive to fly
breeding, accounting for the presence of a high size of the population
throughout the flowering season. In the coldest region surveyed, one of
grassveld planted to wattles and eucalypts, breeding seems possible only for
a short period at the start of flowering. The breeding is then interrupted by
low temperatures and by the lack of alternative host plants.
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Regarding the Australian origin of both the host-Eucalyptus and
Sflavohirta, Tsacas and Johannsmeier (loc. cit.) stress the interest of the
finding of flavohirta associated with Eucalyptus in South Africa. Though
Aavohirta is known from only a few specimens in Australia, it is widespread
and is associated with Eucalyptus blossom (Bock, 1976). It is worth noting
that the fly body coloration, which is unique within the melanogaster-group,
may be an adaptation to camouflage for predator avoidance, since it is almost
the same color as the flowers of the Eucalyptus species on which it feeds
(Bock, 1980). Considering that very few collections seem to have been made
from Eucalyptus flowers in Australia, the species may not be rare in that
region where it is native (Bock, personal communication).

Hence, Drosophila associated with Eucalyptus appears to show a situation
which has some of the characteristics of that involving the resource-specific
D. buzzatii, which extended its geographical range together with its
host-plant, the cactus genus Opuntia (Carson and Wasserman, 1965).
However, it is more difficult to explain how the eucalypt Drosophila
immigration in South Africa proceeded, since Eucalyptus were probably not
introduced as flower-cups. For the buzzatii-Opuntia association the
colonizing process is clearer inasmuch as buzzatii can breed in both cladodes
and fruits. Owing to the introduction of Eucalyptus throughout the world,
Aavohirta may likely be found in other biogeographical regions. This
example illustrates the possible role of man in the actual biogeographical
range of some species.

D. flavohirta is clearly closely allied to the melanogaster species-group
(Bock, 1976). However, probably due to its adaptation to flower-breeding,
lavohirta appears to represent a specialized offshoot of the main melanogas-
ter group phylogenetic line. Though rare, the flower-breeding specialization
has appeared twice within the melanogaster-group, since it is also known in
those members of the elegans-subgroup living in the oriental biogeographi-
cal region. The monospecific flavohirta-subgroup and the elegans-subgroup
are not particularly closely related and they represent independent adaptive
events to flower breeding.

5. Flower-breeding Zaprionus

Flower-breeding habits have evolved within the genus Zaprionus as in the
genus Drosophila. African Zaprionus species provide a broad array of
flower-dependency, from those species which exploit decaying fallen
flowers as often as any other decaying fruit (Z. collarti) to those which have
strict flower-dependency (Z. badyi and Z. vrydaghi).

Graber (1957) reported that two endemic Cucurbitaceae, Momordica
runzorica and M. foetida, live sympatrically on the slopes of volcanoes lying
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in the Upper Rift of central Africa. Though these species differ only slightly
in their inflorescences, thev are assumed, by this author, to support different
flower-breeding drosophilids. M. runzorica is only visited by Zaprionus
momorticus whereas M. foetida is only visited by Drosophila momortica. Both
flies lay eggs within the male flowers before they wither and larval
development occurs in decaying fallen flowers. Such a host-plant partition-
ing involving two closely related sympatric plants is very interesting and
requires confirmation.

'OVIPOSITION!

Zaprionus badyi : '
'

' '

o DISPERSION [+  DEVELOPMENT [ EMERGENCE
roviR
.

l » DISPERSION } = DEVELOPMENT }- EMERGENCE

Zaprionus ornatus

Fi1G. 14. Flower-breeding Zaprionus in the Ivory Coast. (a) Flower of Rothmannia whitfieldii
(Rubiaceae); (b) egg of Zaprionus badyi, (c) eggs of Zaprionus on the myophilous stigma of R.
whitfieldir; (d) drosophilid breeding methods on the tree (after Lachaise, 1979a).

Lachaise (1974) found two co-existing Zaprionus species, Z. badyi and Z.
ornatus, simultaneously sharing the same flowers of the Rubiaceae
Rothmannia whitfieldii. This small tree lives in the riparian semi-deciduous
gallery forest of the Bandama river in the pre-forest areas of the Ivory Coast.
Flowering occurs from February to April, and the plant is easily located by
its heavy, fruity fragrance. The large flowers are solitary on short stalks at
the ends of the branchlets (Fig. 13d). Each has a tubular calyx covered with
rusty-brown hairs and five narrow lobes, a trumpet-shaped corolla with five
lobes, and a massive, club-shaped hanging style with apical stigmas. Both
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Zaprionus breed in the fleshy style on the living flower (Fig. 14). Eggs are not
laid in any place on the style but accurately on the apical stigmas (Fig. 13c).
In view of the relative lengths of the sexual immaturity time in adult females
(Fig. 14) Z. badyi is expected to be more specialized than Z. ornatus,
inasmuch as extrapolation can be made from what was known from
fig-breeding drosophilids. (In Lachaise’s former paper Z. ornatus was not
distinguished from the sibling species of the Z. vittiger complex.) This
assumption of different degrees of specialization has some confirmation: Z.
badyi has also been reared from the flower of the Amaryllidaceae Crinum
sanderianum in swampy areas of the Nimba mount bottom (Lachaise,
1979a). It appears, therefore, as a strict flower-breeding Zaprionus. In
contrast, Z. ornatus was shown (Table II) to breed also in fruits (Ficus,
Spondias, Polyalthia, Staudtia, Gambeya and Cissus).

Moreover, characteristics of the eggs support this assumption: those of Z.
badyi have four short filaments as also found by Graber (1957) in the
flower-breeding Z. momorticus. By contrast, the eggs of Z. ornatus have four
long filaments, as do other fruit-breeding Zaprionus.

Though Zaprionus larvae were only seen feeding on the stigma, they may
exploit the entire massive style, inasmuch as they are able to feed on the
plant tissues. If such is the case, the style of Rothmannia provides a large
amount of a relatively long-lived food supply. This may then support the
larval growth of two Zaprionus species in so far as both species lay few eggs
on the same stigma. However, since Z. badyi was shown to breed in fresh
flowers and Z. ornatus in decaying fruits and fallen flowers, the overlapping
oviposition period observed might also be part of an ecological succession
whose early stages (fresh flowers on the tree) are exploited by Z. badyi and
whose late stages (withering flowers on the tree and fallen flowers) are
exploited by Z. ornatus.

In the evergreen rainforest of Tai Zaprionus neglectus breeds frequently in
February in the flowers of Rothmannia whitfieldii (Couturier ez al., 1983).
Twenty eggs of Zaprionus were counted on a single style, all of them located
in the gelatinous stigma where the larvae are also found. In addition,
Drosophila ananassae was bred from more ripened styles of this plant.

In Tai Zaprionus neglectus also breeds frequently within the flowers of
Crinum jagus (Amaryllidaceae) which grows abundantly in swampy areas.
The eggs are laid on the base of the staminate peduncles and on the base of
the corolla (Couturier ez al., loc. cit.).

6. Host-flower specificity and reproductive strategies

Except for Zaprionus vrydaghi, strictly associated with high-stemmed Costus,
no relatively strict host-flower “specificity” has definitely been proved to



304 DANIEL LACHAISE AND LEONIDAS TSACAS

occur among African flower-breeding drosophilids, since the association of
one fly species to one flower genus or species is inconclusive from the few
available records. Those species which are obligatory flower-breeders, e.g.
the aterrima species complex and Z. badyi, certainly use several host-plant
genera. Moreover, most records from flowers involve fly species (see Table
IT) which exploit decaying fallen flowers opportunistically. Hence, most
African flower-breeding drosophilids are polyphagous, depending upon a
broad array of host-plants. Host-specificity cannot evolve in host-plants
with short blossoming periods. Predictability is a consequence of repeatabi-
lity, and continuous blossoming is the first condition of host-specificity.

Kambysellis and Heed (1971) described the highly diverse female
reproductive systems of the Hawaiian drosophilids stressing the causal
factors operating to adjust reproductive rates in various environments.
They convincingly showed that the flower niche supports species with a low
reproductive potential in contrast to the stem niche or leaf niche and
discussed how the reproductive physiology of the various species had been
adapted to the carrying capacity of these niches. Kambysellis and Heed’s
conclusions have been supported by all subsequent work and are consistent
with the scattered observations dealing with flower-breeding drosophilids,
not only in Africa, but in every other region of the world [see Wheeler et al.,
1962; Brncic, 1966 (in Chile); Pipkin ez a/., 1966 (in Panama, Colombia and
Trinidad); Okada, 1975 (in Java and Taiwan); Cook et al., 1977 (in
Australia); Hunter, 1979 (in Colombia); Burla, 1954; Lachaise, 1979c; and
David and Vouidibio, personal communication (in Africa)].

Flower-breeding drosophilids have in common a low reproductive
potential, few ovarioles, few concurrent mature eggs, and they lay few eggs
on the same flower. Owing to the low carrving capacity and the poor
nutrient value of flowers as a larval food resource, such a reproductive
strategy appears highly adapted to exploitation of flowers.

Contrary to the assumptions of Pipkin (1964) and Hunter (1979), a lack of
filaments in eggs cannot be used as a phylogenetic characteristic. Indeed, on
the contrary, the absence of filaments has been proved to be an adaptive
characteristic associated with oviposition in flowers, such that this
characteristic has evolved in flower-breeding drosophilids of three genera
(Drosophila, Drosophilella, Scaptomyza) and in three subgenera of Droso-
phila (Drosophila, Phloridosa, Scaptodrosophila). As a corollary, all species
belonging to these taxa which are not associated with flowers for
reproduction have filament-bearing eggs. Furthermore, closely related
species may have very different egg filament patterns consequent on the type
of breeding-site used. For instance in African species of the subgenus
Scaptodrosophila, the egg of the flower-breeding aterrima is filament-less,
while that of the fruit-breeding latifasciaeformis has six filaments.
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This allows for a prediction of breeding site from egg filament structure
(see the discussion in Lachaise, 1979c). Since egg filaments have a
respiratory function (Hinton, 1959, 1969), they appear to be only necessary
in those eggs which are laid in oxygen poor media, such as fermenting fruit
or sap. In contrast, for those eggs which are simply laid on the surface of
flowers, respiratory exchanges can occur through the chorion of the body of
the egg and filaments are unnecessary. Further evidence for the adaptive
nature of egg filaments can be found in the eggs of species with intermediate
ovipositing behavior. For example, though being strict flower-breeders,
females of the African species Zaprionus badyi lay their eggs in the fleshy
style of Rothmannia. That the eggs are partly submerged in this medium,
may account for the occurrence of four short-filaments. Short egg filaments
can be found in other strict African flower-breeding Zaprionus such as Z.
momorticus. All fruit-breeding Zaprionus have eggs with four long filaments.

Notice, however, that Pipkin e a/. (1966) also provide strong arguments
supporting the adaptive nature of egg filaments. Like Kambysellis and Heed
(1971) they showed that flower-breeding flies may be ovoviviparous and
stressed that filaments are not then needed. Paradoxically, still further
evidence can be found in the long egg filaments of the neotropical
flower-breeding D. mcclintockae and in the oar-shaped filaments of D.
hansoni. Pipkin et al. (loc. cit.) showed that these provide a mechanism for
the attachment of the egg to the floral hairs of the host-plants.

7. Co-adaptation of flowers and pollinating drosophilids

So far there has been little attention given to the role of flower-feeding
drosophilids in pollination ecology. However, this aspect of flower—fly
association has evolutionary implications for plant—drosophilid co-adap-
tations in the tropics.

Free (1970) reported that drosophilids may be effective in the pollination
of certain field crops such as guayale, the composite Parthenium argentatum.
In New Guinea, Essig (1973) assumed that pollination of Nypa palm-tree
flowers was due to drosophilids which use the Nypa inflorescences as
feeding—breeding sites. In Cameroon De Miré (1971) emphasized a
relationship between the fruiting rate and the frequency of visiting cacao
flowers by Drosophila, ceratopogonids and ants. In this study, one
Scaptodrosophila, D. triangulifer, was assumed to have carried out about
439 of the fertilizations. In cacao plantations in the vicinity of Yaoundé in
Cameroon, Massaux et al. (1976) showed that many drosophilids (Droso-
phila bocqueti, D. eoundo, D. lambi, Zaprionus armatus, Z. ghesquierei, Z.
tuberculatus) had pollen-bearing teguments (see the mean number of pollen
grains borne per fly in Table III). Since it is usually assumed that about 35
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pollen grains are required to ensure cacao-flower fertilization all the
drosophilids mentioned above are potential pollinators. Drosophilids were
shown to have more cacao pollen than all other insects except aphids. The
pollination efficiency of these drosophilids would be related to morphologi-
cal structures favoring pollen transport and to their permanent presence in
cacao-plantations the vear round. According to Massaux et a/l. (loc. cit.)
their larvae would live in leaf mould, cacao-pods and decaying wood;
however, except for cacao-pods, these breeding sites appear somewhat
speculative.

TasLE ITI. Amount of cacao pollen grains carried per fly
(after Massaux er al., 1976)

9, of Variation

Samples Mean Coefficient
Drosophila bocqueti 9 63-0 20
Zaprionus spp. 9 623 62
Drosophila lambi 9 55-8 32
Drosophila eoundo 9 49-5 22
Drosophila sp. 2 465 4
Drosophila sp. 2 36:0 31
Drosophila sp. 3 32:0 36
Drosophila triangulifer 9 19-8 49

None of the cases reported above suggest a specific adaptation of the plant
for pollination by drosophilids comparable to what occurs in Asclepiadaceae
flowers living in South Africa (Agnew, 1976). This author reported an
exciting case of co-adaptation between the myophilous small, leafless
xerophytic Stapeliad Caralluma schmweinfurthii and certain species of
pollinating drosophilids. The plant is a small, jointed, procumbent
perennial consisting of soft fleshy stems growing up to 5 or 6 cm above the
soil. Though the fly—plant interraction has been studied under semi-natural
conditions, it should be pointed out that the plant species and the pollinating
drosophilids are widely distributed in central and south-central Africa.

Five species of Drosophila (D. immigrans, melanogaster, simulans, puncta-
tonervosa, and the Drosophila repleta species group) and two species of
Zaprionus (Z. tuberculatus and Z. collarti) were deceptively attracted to the
stapeliad flowers, which chemically mimic the natural breeding substrate.
Then, Agnew (loc. cit.) reported the first instance of myophily involving
drosophilids. According to Faegri and van der Pijl (1966), myophilous
flowers are those which are adapted for pollination by flies and exhibit a
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complex of characteristics associated with this adaptation. Caralluma
Stapeliads were shown by Agnew (1976) to provide the syndrome of
myophily: (a) chemical mimicry of the drosophilid breeding substrate; (b)
positive attraction of potential pollinators; (c) capture of four different
species (immigrans, melanogaster, simulans, collarti) carrying pollinia; (d)
features of the flower indicative of myophily; and (e) correspondence
between flowering time and peak drosophilid activity.

Drosophilids were efficiently attracted at dawn and dusk to the flowers,
which emitted a strong odoir of over-ripe fruit. No insects other than
drosophilids were observed to be attracted to the flower. There was no
differential attraction between the sexes of the visitors, and both males and
females appeared to be equally capable of acting as carriers of pollinia.
Attachment of the pollinaria (pollinia plus associated structures) to the
proboscis of the fly takes place while the fly is tapping with the proboscis on
the corona. In one case, two pairs of pollinia were attached to a single fly.
None of the captured specimens with pollinia had them attached anywhere
but on the proboscis, where the corpusculum and retinacula (or translator
arms) were affixed to the shaft of the proboscis. ,

Actual pollination (that is, release of the pollinia) was not observed.
Agnew (loc. cit.) suggested that there must be a time delay between picking
up the pollinia and their release in order to minimize the likelihood of
self-pollination. He concluded that his observations do not necessarily
establish that any or all of the visitors are the actual pollinators where the
plant grows naturally. The fact that several drosophilid species can pick up
pollinia support the viewpoint that the stapeliad plant may be adapted, not
to a specific pollinator, but to a group of similar sized or closely related
species. In contrast to Drosophila immigrans, melanogaster and simulans,
most Zaprionus species are restricted to Africa and may well be effective
pollinators in the wild.

This expectation of Agnew is supported by similar observations of many
pollinia-laden Zaprionus in the riparian semi-deciduous forest of Lamto and
in the evergreen rainforest of Tai (Lachaise, 1979a). Further, in the lowland
evergreen rainforest of Kumba in southwestern Cameroon, Lachaise
(personal communication) collected five Zaprionus specimens (four Z.
collarti and one Z. tuberculatus) all carrying one pollinia on the side of the
abdomen on the second, third or fourth segment.

Agnew (1976) stressed that while drosophilids are deceived into
investigating the stapeliad flowers, oviposition does not take place. Hence,
wastage of eggs does not occur and thus the deception is not counter-selec-
tive to responsive insects. This suggests that the co-adaptation is a long
standing one.

Lachaise (1979a) argued that a second example of a myophilous-plant was
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the Rubiaceae Rothmannia whitfieldii in whose style two co-existing
Zaprionus species breed in the Ivory Coast. It was mentioned above that the
Zaprionus eggs were not laid in any place on the style but in the apical
stigma. In contrast to the major part of the style, the stigma is gelatinous in
appearance and consistency and has strong similarities to fermentative
fruit-tissues (Fig. 13c). Furthermore, the swollen portion of the style clearly
sticks out of the corolla, making the sigma fully apparent. The hanging habit
of the flower may allow the corolla to be protected without hiding the
stigma. These structures strongly evoke adaptations evolved to attract
drosophilids, which could thereby be involved in the pollinating process.
Further evidence is needed to prove this.

C. FuUNGUS-BREEDERS

Adaptive radiations on fungi have occurred twice in tropical Africa at the
generic level: Leucophenga and Mycodrosophila are both unequivocally
fungus-associated genera, even though some Leucophenga are known to
breed in cercopid spittle-masses (see below). Both of these genera are
world-wide in their distribution, though predominant in the tropics, and
include fungus-breeding species in every biogeographical region (Heed,
1957; Throckmorton, 1975; Bock and Parsons, Chapter 7, Volume 3a).

Lepesme (1947, quoting Ghesquiere) reported that Leucophenga proxima
was bred from Ganoderma parasitizing the oil-palm tree Elaeis guineensis in
Zaire. L. proxima was also reared from unidentified fungi in Zaire by Collart
(1939), in the Lamto pre-forest savannahs of the Ivory Coast by Lachaise
(1979a) and in the rainforest of Tai in the southwestern Ivory Coast by
Couturier et al. (1983). Several unidentified Leucophenga species were bred
from Favolus and Polyporus in Uganda by Buruga and Olembo (1971).
From unidentified fungi growing in riparian gallery forests in Lamto 114
individuals of Leucophenga buxtoni were bred (Lachaise, 1979a) while 585
individuals of L. perargentata were bred from a cluster of fungi on felled tree
trunks in the rainforest of Tai (Couturier et al., loc. cit.). The density of
fungus-breeding Leucophenga larvae appears strikingly high with respect to
the amount of available food. The ratio of the biomass of Leucophenga
parargentata produced on the biomass of resource shared is probably the
largest known for drosophilids in tropical Africa.

Furthermore, in the rainforest of Banco, in the southern Ivory Coast,
Burla (1954) collected adults of Leucophenga guro, L. halteropunctata Duda,
L. proxima, L. sema and L. subvittata on fungi on felled tree trunks. In
riparian forest galleries of Lamto, Lachaise (1975, 1979a) observed that
Leucophenga proxima and L. buxtoni occupy, all the year round, the
undersides of the leaves of the underwood Graminaceae Streprogyna
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gerontogaea and Olyra latifolia. Since both species have been shown to breed
in fungi, and not on grasses, this may indicate a lek behavior resembling that
observed by Spieth (1968, 1973) in Hawaii, and Parsons (1977a) and Parsons
and Bock (1976, 1977) in Australia.

Adults of Leucophenga have occasionally been found feeding on sap
exudation in Japan (Okada, 1962) and Africa (Lachaise, 1975). Moreover,
Okada (loc. cit.) described for Leucophenga and Amiota a special habit of
flying which appears to be adapted to their feeding and resting on vertical
tree trunks. Accordingly it can be concluded that the breeding and adult
feeding sites of Leucophenga are separated, in contrast to other tropical
African drosophilids.

Mpycodrosophila appear to form a more biologically homogeneous genus
than Leucophenga, though little attention has been paid to them in Africa.
However, species of Mycodrosophila show strong evidence of being
narrowly restricted to fungi for reproduction and feeding. Although there
are few published records, it is rare to find soft fungi in tropical Africa
without Mycodrosophila.

Buruga and Olembo (1971) reared Mycodrosophila ditan, M. aff. ditan, M.
fracticosta, M. nigerrima, and a species near M. nigerrima from Polyporus in
Uganda. Burla (1954) caught five Mycodrosophila species, M. adyala, M.
atie, M. fracticosta, M. gaku and M. kabakolo, which were feeding on fungi
in the rainforest of Banco in the southern Ivory Coast. In the evergreen
rainforest of Tai in the same country, Couturier et a/. (1983) caught three
species of Mycodrosophila in the same conditions.

Within the genus Drosophila few African species use fungi widely as larval
food supply except, perhaps, the subgenus Hirtodrosophila, in contrast to
the situation in the palearctic region (She:rocks, Chapter 18, Volume 3b;
Shorrocks and Charlesworth, 1980). Burla (1954) recorded D. akabo, D.
sanyi and D. vina on fungi on felled trees in the Banco rainforest, and
Buruga and Olembo (1971) reared a species near D. akabo from Favolus in
Uganda. Those Drosophila species which utilize soft fungi as breeding sites
and the undersides of bracket fungi as lek territories in Australian
rainforests also belong to the subgenus Hirtodrosophila (Parsons, 1977a,b;
Parsons and Bock, 1976, 1977). Indeed, the majority of Australian
Hirtodrosophila species have been collected in the vicinity of soft fungi
(Parsons, personal communication).

D. Lear MINERS AND STEM BORERS -

Drosophilids that use leaves as a larval food source are rare in tropical
Africa, in contrast to the situation in Hawaii (Montgomery, 1975).
Nevertheless, two species of Gitona were found to be leaf miners and stem
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borers of Phytolaccaceae, a family closely related to Caryophyllaceae and
Chenopodiaceae, in both continental eastern Africa and Madagascar. Séguy
(1951) reported the occurrence of Gitona pauliani, whose larvae mine the
leaves of the Endod plant Phytolacca dodecandra (reported as P. abyssinica)
in Madagascar. Tsacas and Teshome (1981) found that the larvae of G.
pauliani and a second species, G. ethiopica, mine the soft stems and leaves of
Phytolacca dodecandra in Ethiopia. P. dodecandra is a dioecious liane living
in post-farming bush in peri-forest savannahs, and is widespread in tropical
and South Africa and in Madagascar (Letouzey, 1970). Tsacas and Tshome
(loc. cit.) suggested that the geographical range of G. pauliani matches that
of P. dodecandra. Gitona pauliani is therefore expected to be found in West
Africa.

Phytolacca dodecandra is of interest as a host-plant for drosophilids due to
the high rate of saponins yielded by its fruits and, probably, also its leaves
(Rodriguez and Levin, 1976; Harborne, 1977). Saponins are a group of
non-nitrogenous terpenoid toxins which act as repellents or feeding
deterrents for many insects (e.g. Scarabaeoidea), molluscs and fishes
(Rodriguez and Levin, loc. cit. and references therein). The metabolic
effects of saponins on phytophagous insects have been postulated to be the
result of inhibited sterol assimilation or proteinase inhibition (Beck and
Reese, 1976 and references therein).

Evidence of such adaptation to saponin poisoning is also shown in the
behavior of Zaprionus tuberculatus (or a closely related species of the
tuberculatus species complex) whose larvae feed on the fruits of Phytolacca
dodecandra in the Buto forest in Uganda (Buruga and Olembo, 1971;
Buruga, 1976). The attention of pathobiologists has been focused, in
Ethiopia, on leaf-mining Gitona because of an indirect implication in the
extension of bilharzia. Aklilu Lemma (1970) stressed the strikingly high
molluscicidal potency of the fruits of the Endod plant (Phytolacca
dodecandra) which, therefore, represents a potential means of reducing or
even eradicating Schistosomiasis, a human disease that is endemic to
Ethiopia. These plants are used to suppress the populations of snails which
are the intermediary hosts of the Trematode Schistosoma. Ghiday (1971)
reported that “future plans for developing the Awash Valley of Ethiopia,
include a far-reaching snail control programme for preventing the spread of
Schistosomiasis. Therefore, it was considered important to investigate the
possibility of mass producing Endod for self-help molluscicidal purposes.
Because Gitona species seriously attack Phytolacca dodecandra they are of
grave concern in the struggle against schistosomiasis. Accordingly, the
control of bilharzia requires elimination of Phytolacca-dependent Gitona. A
good knowledge of the life-histories of Gitona species is therefore needed.
Thus, Ghiday (1971) made a preliminary study of the pre-imaginal stages of
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the “Endod fly” (egg, larva and pupa) which develop on or within the plant
stem.

The extension of the range of Gitona pauliani was, presumably,
coincident with the spread of its host plant from a centre in East Africa.

The larval habit of Gitona pauliani is somewhat similar to that of the
Palearctic leaf mining Scapromyza. These species are known to mine the
leaves of many genera belonging to such families as Amarantaceae and
Salsolaceae which are, anatomically, also closely related to Phytolaccaceae
(Séguy, 1951).

Nothing is known in Africa regarding the larval habits of species of
Scaptomyza. However, it can be pointed out that adults of Scaptomyza
(Scaptomyza) santahelenica were caught on Senecio prenanthifiora in Saint
Helena Island (Tsacas and Cogan, 1976). In this connection, it can be
reported here that Drosophila altissima, a species of montane dentissima
group, was found on Senecio brassiciaeformis (or S. aberdarica) on Mount
Kinangop in Kenya (Tsacas, 1980). This species, which has been found as
high as 3961 meters, is the highest drosophilid in the world.

In the high volcanic mountains of Bafut Nguemba (Western Cameroon)
the sub-montane forest gives place to a grazing-meadow with Lobelia and
Helichrysum above 2000 meters and then, at 2400 meters, to an ungrazed
grass area with dense cover of Geniosporum rotundifolium. This Labiaceae
supports an abundant population of adult Scaptomyza, e.g. 187 individuals
were caught on less than 20 square meters (Tsacas and Lachaise, personal
communication).

E. DecayING TRUNK, BRANCH AND TUBERCULOUS RooT
BREEDERS

Nothing exists in tropical Africa similar to the remarkable adaptive
radiation on decaying fibrous bark, layered wood or parenchymatous stems
that has occurred in the picture-winged Drosophila living in Hawaii (Heed,
1968, 1971; Montgomery, 1975). This may be accounted for by a much
greater amount of fruit available as a larval resource in Africa, in contrast to
Hawaii. Owing to the high productivity, predictability and superior
nutritive value of fruits, in comparison to any kind of wood larval resource,
such an adaptive radiation had little opportunity to evolve in Africa.
Despite these considerations a few species have been found to utilize a
woody resource in tropical Africa. Thus, Zaprionus ghesquierei in Zaire
(Ghesquicre, in litt., in Lepesme, 1947), and Z. inermis and Drosophila saba,
a species of the subgenus Scaptodrosophila, in the Congo (Vouidibio,
personal communication) were shown to breed occasionally in decaying
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trunks of cut oil palm trees Elaeis guineenis. Also, Collart (1937a) mentioned
that adults of Z. armatus and Z. collarti were found on decaying trunks of
Ficusin Zaire, but larvae were not recorded. It is noteworthy that all of these
five species have also been reared from fruits.

Of greater interest are the sibling species Drosophila iri and D. fraburu
which mainly breed in retted tuberculous roots of the manioc Manihot
esculenta (Euphorbiaceae). This has been observed in several localities in the
Congo by Vouidibio (1977). Manioc has tuberculous roots which are used as
a major food source by the local people. However, these tubercules contain
hydrocyanic acid and they require retting to be edible. Once softened and
skinless, the manioc wastes make a suitable and highly nutritive larval food
supply for drosophilids.

In addition three other species (D. melanogaster, D. malerkotliana and D.
nasuta) have been reared from retted manioc by Vouidibio (loc. cit.).

Retting occurs in man-made ponds which are usually connected with the
stream. D. ir: has been reared from a number of substrates that have been
partially immersed in water, for example infrutescences of Elaeis and
Pandanus (Lachaise, 1979a; Rio et al., 1983). In the western Ivory Coast,
Rio et al. (1983) reared large numbers of D. iri from partially immersed
infrutescences of Pandanus candelabrum. In this region, the screw-pine
population grows in an area liable to flooding. In forested mountains in the
vicinity of Yaoundé (Cameroon) D. iri was only swept above temporary
streams flowing through the dark underwood (Tsacas et al., 1981).
Likewise, Tsacas and David (personal communication) recorded D. i7i in
the Seychelles on the fruits of a Jaquier (Artocarpus sp., Moraceae) which
were partially immersed by a coastal stream.

Thus, Drosophila iri shows a strong habitat preference for water-depen-
dent resources (and shelters), as has been shown for some Japanese species
by Beppu (1979). Tsacas and Legrand (1979) suggest that the larval habit of
species like D. iri may have been the first step within the evolutionary
pathway that led to an aquatic larval life and predation, as occurs in the
simulivora group.

F. CoMMENSAL BREEDERS WITHIN CERCOPID SPITTLE MASSES

Though most African and Malagassy Leucophenga species are clearly fungus
breeders, three of them show the remarkable larval habit of developing in
the spittle-masses of spittle-bug nymphs. These are Homoptera of the
family Cercopidae which suck the sap of the plant. The froth which
surrounds the nymphs is produced by the nymphs themselves by forcing air
into a fluid exuded from the anus. The foamy secretion is widely assumed to
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protect the cercopid nymphs from dessication and may also afford them
some degree of protection from predators. Hence, cercopid associated
Leucophenga larvae may be similarly protected.

In Madagascar, larvae of Leucophenga decaryi (reported as Pryelusimyia
decaryi), develop in the excreta produced by the cercopid Ptyelus goudoti,
which grows on Mimosa delicatula (Séguy, 1932). In Uganda, a Leucophenga
species close to L. sema breeds within the abundant frothy fluid secreted by
Pryelus flavescens, which uses the Leguminosae tree Milletia dura
(Odhiambo, 1958). In Nigeria larvae of Leucophenga proxima live in spittle
masses of Ptyelus grossus (Fig. 13e) on stems of pigeon pea, Cajanus cajan
and Spathodea campanulata or in spittle masses of Poophilus adustus on the
Compositae Aspilia africana (Medler and Adenuga, 1969).

Cell | grva of

~Syconial Leucophenga
cavity proxima
Nymph of

Ptyelus
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. Spittle mass
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> Larva of Chalicodoma
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F1G. 15. Three examples of protected breeding-sites used by specialist drosophilids in

tropical Africa. (A) Lissocephala disjuncta breeding within the closed fig cavity of Ficus sur;

(B) Cacoxenus apidoxenus breeding within the solitary bee nest of Chalicodoma cincta; (C)
Leucophenga proxima breeding within the spittle mass of the cercopid Pryelus grossus.

The association with cercopid nymphs has evolved at least three times in
Africa within the genus Leucophenga (Fig. 15). It is noteworthy that the
commensal cercopids are mainly Pryelus exploiting Leguminosae. The
African and Malagassy Pryelus species are gregarious spittle bugs, i.e. a
coalescence of the individual spittle masses making a frothy muffaround the
plant stems. These large foamy masses drip unceasingly to such a degree
that puddles of water occur at the foot of the plants (Fig. 13e). By associating
with these gregarious spittle bug nymphs, rather than with solitary species,
Leucophenga larvae are protected against dessication when a cercopid
nymph moves to a new feeding place on the plant.
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A similar ecological adaptation to the spittle masses of cercopids has also
occurred in the New World (Ainslie, 1906; Lamb, 1919; Baerg, 1920;
Williams, 1923, 1931; Clausen, 1940; Wheeler, 1952; Bennett, 1965). There,
three species of the neotropical and nearctic genus Clastopteromyia use the
same larval habitat. Their commensal cercopids all belong to the genus
Clastoptera (see Ashburner, Chapter 10, Volume 3a, for more detailed
information).

Such an adaptive convergence in both the new and old world is an
example of “‘ecological equivalence”: “the products of convergent evolu-
tion, organisms that have evolved independently and yet occupy roughly
similar niches in various communities in different parts of the world”
(Pianka, 1974). Both Leucophenga proxima (Medler, and Adenuga, 1969)
and Cladochaeta inversa larvae (Wheeler, 1952) show hook bearing ventral
pseudo-legs, which favor attachment to the spittle bug nymph when it is
moving. These morphological adaptations are not seen in fungus-breeding
Leucophenga. Such a similar phenotypic response provides evidence that it is
an evolutionary convergence per se. Leucophenga and Clastopteromyia
evolving independently of one another under similar environmental
conditions have responded to similar selective pressures with nearly
identical adaptations.

It is difficult to conceive that a species has evolved a morphological
differentiation in relation to a peculiar type of breeding site which would be
used only occasionally. Leucophenga proxima is clearly a fungus-breeder (see
above) and the specific identification of this species in cercopid spittle
masses must remain in doubt, especially as it predates Bachli’s (1971)
thorough revision of African Leucophenga.

The demographic implications of this larval habit are not known. Bennett
(1965) recorded that the larval development of Clastopteromyia was
completed in 18-20 days and the pupal stage in about 8-9 days. This
development time would thus last about one month. This is exceptionally
long and might be due to the very low nutritive value of the spittle.

G. CoMMENSAL BREEDERS WITHIN SOLITARY BEE NESTS

Tsacas and Desmier (1976) found in Senegal, in the Ivory Coast and in
Cameroon one species of Cacoxenus (subgenus Gitonides), C. apidoxenus,
which lives in a close commensal association within the arboreal nests of
solitary bees (Fig. 15). This life history is strikingly similar to that of the
palearctic Cacoxenus (Cacoxenus) indagator (Séguy, 1934, 1950; see chapter
10 by Ashburner in volume 3a for details). The solitary bees supporting
development of Cacoxenus apidoxenus in West Africa belong to two
subgenera of Chalicodoma: the subgenus Callomegachile with C. mephistolica
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in Senegal and C. kamerunensis in Cameroon; and the subgenus Gronoceras
with C. cincta cincta in the Ivory Coast and in Cameroon.

Cacoxenus apidoxenus appears to be associated with the entire genus
Chalicodoma, a genus whose species are either mason or resin bees. The
aerial mud-nests consist of one or several cells in which the Chalicodoma
bees store a mixture of pollen and nectar. The eggs of C. apidoxenus are laid
either on this pollen jelly or on the walls of the cell before it is closed. The
drosophilid larvae are assumed to feed on the pollen jelly per se and to be
commensals of, rather than predators of| the bee larvae.

Although nothing is known of the demographic strategies of these
bee-dependent drosophilids, it is to be expected that their reproductive
effort is greatly delayed (in order to allow ovipositing females to discover
unclosed solitary bee-nests), that their fecundity is low and that they lay
eggs in several bee nests. Tsacas and Desmier (1976) pointed out that the
bee-nests transported to France yielded only four to five Cacoxenus adults
per cell.

Tsacas and Desmier (loc. cit.) and T'sacas et al. (Chapter 5, Volume 3a).
emphasize that if adults of Cacoxenus are able to tolerate such different
climatic conditions as those that occur in the Sahel and in the rainforests,
then their pre-adult stages must develop under remarkably constant
conditions. An adaptive strategy involving a metabolic cost can have evolved
only insofar as the individual fitness of the progeny is thereby greatly
enhanced. Once inside the closed bee-nest the few drosophilid larvae find an
excess of food and efficient shelter. Cacoxenus larvae then have broken away
from intraspecific competition, predation risk and environmental instabi-
lity. The wide geographic range of C. apidoxenus, coincident with that of its
host, stresses the success of such an adaptive strategy.

H. PrepDATORS OF HOMOPTERA
Many Homoptera secrete honey-dew which renders them attractive for
ovipositing females of drosophilids and suitable as a food source for their
predaceous larvae.

Adults of Leucophenga proxima and of Zaprionus belonging to both the
vittiger species complex and the tuberculatus species complex have been
caught while visiting honey-dew produced by colonies of the coccid
Leucanium africanum, which use Coffea as a host-plant in Zaire (Collart,
1937a and 1939). One adult of L. proxima was also recorded on honey-dew
secreted by Leucaninae developing on Cassia siamea in Zaire (Collart,
1939). There is no evidence that either Zaprionus or Leucophenga are able to
oviposit and breed within the sugary secretion of Homoptera.

In contrast the subgenus Gitonides of the genus Cacoxenus widely exploits
the colonies of scale insects or mealy bugs as breeding sites in the
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pantropical region (see Ashburner, Chapter 10, Volume 3a). The mealy
bugs of the family Pseudococcidae are among the least specialized of the
superfamily Coccoidea and cause damage to a wide variety of plants. These
coccids are easily transported on plant material and this accounts for the
world-wide distribution of species such as Saccharicoccus sacchari. The
larvae of the drosophilid Cacoxenus (Gitonides) perspicax, which predate
this mealy bug have spread with its coccid-prey in Africa, Asia, New
Guinea, North-eastern Australia and Hawaii (Tsacas and Desmier, 1976).

In Africa Cacoxenus perspicax breeds on the pseudococcid Saccharicoccus
sacchari in Somalia (Séguy, 1933), Mauritius Island (Box, 1953; David and
Tsacas, 1975) and Reunion Island (David and Tsacas, 1975). Other
pseudococcids are also used as prey by C. perspicax, e.g. Pseudococcus
Silamentosus in Zaire (Ghesquiere, 1934), Pseudococcus brevipes (Moutia and
Mamet, 1946) and Dysmicoccus boninsis (Box, 1953) both colonizing
pineapples (Ananas comosus) in Mauritius and Planococcus citri damaging
rose-laurel (Nerium oleander) in Reunion Island (Etienne, personal com-
munication).

Another member of the Gitonides subgenus, Cacoxenus frontalis has
larvae which predate Aspidoproctus bouvieri in Zaire (Collart, 1935). This
scale-insect, which grows on Cassia siamea, belongs to the Margarotidae,
another family of Coccoidea which produces waxy secretions.

An undescribed species of Amiota whose larvae predate Saccharicoccus
sacchari on sugar cane in Reunion Island has been found by Etienne
(personal communication). Etienne discovered that this Amiota species also
predates Delphacidae, such as Perkinsiella saccharicida colonizing sugar
cane and Peregrinus maidis colonizing maize in Reunion Island. These
Delphacidae are Fulgoroidea pests which greatly damage sugar food crops
in the tropics. Perkinsiella is a vector of the “Fidji virosis” and the Amiota
species could possibly be used, in addition to mirid bugs and mymarid
wasps, for the biological control of these pests. Tsacas (personal communi-
cation) has noticed Amiota species visiting sugar cane in the Upper Volta,
but the larval habitat is unknown.

I. AQuATic LIFE AND PREDATION IN THE S/IMULIVORA GROUP
SPECIES

The simulivora species group (Tsacas and Disney, 1974) includes seven
closely related tropical African species: Drosophila gibbinsi, D. cogani, D.
simulivora, D. libellulosa and three still undescribed new species from East
Africa (Tsacas, personal communication). The main feature of the life
history of this group is the adaptation of their larvae to an aquatic life (Fig.
16).

Of the seven species one, D. libellulosa, lives in a very peculiar aquatic
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environment—the egg-mass of a dragonfly species (Tsacas and Legrand,
1979). In contrast, the six other species live in running water (Smart, 1937,
Tsacas and Disney, 1974; Gouteux, 1976; Tsacas, personal communica-
tion).

The shift from aerial life to life in rapid running water involves extreme
physiological and morphological changes. The conditions of life within
egg-masses of dragonflies and in running water are not fundamentally
different. In both cases the larvae live in a liquid, either jelly or water, and
these therefore require similar respiratory adaptations. All the larvae of the
simulivora species group have the same type of respiratory spiracles, and this
is clearly a similar response to the same selective pressure.

The use of aquatic environments by larvae makes the ultimate evolution-
ary step toward specialization in the simulivora group species. Drosophila
libellulosa represents an intervening evolutionary step between species with
terrestrial larvae and species with larvae preying on aquatic insects.
Therefore, Tsacas and Legrand (1979) suggest that the ability of the larvae
to become predators preceded the adaptation to aquatic life.

All species of the simulivora group have a similar diet, i.e. they prey on the
eggs of dragonflies or on the eggs and the first and second instar larvae of
Simulium and chironomids (Smart, 1937; Tsacas and Disney, 1974; Disney,
1975; Gouteux, 1976) (Fig. 16,c and d). In Cameroon, the river that is the
main breeding site for the simulivora group species is the only site that also
continuously supports a large population of Simulium damnosum (Disney,
1975). This emphasizes the possible role of these aquatic drosophilid larvae
in the biological control of S. damnosum.

Evolution toward predation has taken place through adaptive morpho-
logical changes in larvae. The dorsal fusion of the mouth hooks of all the
four species is probably a feeding adaptation to suck and swallow newly
hatched prey larvae. No other example of a dorsal fusion of the mouth hooks
is known in drosophilids (Tsacas and Disney, 1974). The occurrence of an
interectosomal plate, which bounds the ectosomal sclerites, further under-
lines the predatory habits of the larvae of the simulivora group species.
Carnivorous larvae tend to have a greater number of sclerites in their
mouthparts. To attach to leaves hanging above fast running water, the
larvae display strongly sclerotinized ventral hooks (Fig. 16, e,f,g). The
morphological adaptations of the aquatic species are seen in D. libellulosa
but are less highly developed.

Drosophila libellulosa larvae live in Gabon feeding on the eggs of the
dragonfly Malgassophlebia aequatoris Legrand. Egg laying has not been
observed directly but probably occurs either in the dragonfly egg-mass itself
or next to it. According to Legrand (1979) egg-laying of the drosophilid
occurs very soon after oviposition by the dragonfly. The egg of D. libellulosa,
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which is the only egg of the simulivora species group whose morphology is
known, displays two short filaments (Tsacas and Legrand, 1979). The
number of D. libellulosa larvae varies, but may be great enough to succeed in
destroying all the host eggs.

The infestation rate of Odonata egg-masses is strikingly high: of 30
egg-masses studied, 13 (43-39%) were attacked by D. libellulosa. Full larval
and pupal development occurs within the gelatinous egg-mass. The
drosophilid larvae lie fully within the mucus surrounding the eggs on which
they feed, leaving only the chorions (Fig. 16a). Pupation occurs at the
borders of the egg-mass in such a way that the spiracles and the anterior part
of the pupa remain outside. Thereby, the emerging adult has no contact
with the mucus, which could damage it (Fig. 16b).

The duration of larval development of the drosophilid matches that of the
embryonic development in M. aequatoris. From egg hatching to emerging
adult, the larval and pupal development time in D. /ibellulosa lasts around 18
days under laboratory conditions.

J. DECAYING ANIMAL ORGANIC MATTER BREEDERS

In contrast with many families of Diptera, drosophilids rarely exploit
decaying animal organic matter as a larval food supply (see the few known
cases in Ashburner, Chapter 10, Volume 3a).

Seguy (1951), quoting Paulian, reported that, in Madagascar, larvae of D.
melanogaster perhaps breed within sheaths of the Psychid Lepidoptera
Deborrea malgassica. Jacquemard and Tsacas (personal communication)
observed that larvae of Drosophila melanogaster, D. latifusciaeformis, D.
lambi and Zaprionus collarti in the dry Sudanese savannahs of northern
Cameroon develop on the faeces of the Diparopsis matersi caterpillars
(Lepidoptera, Noctuidae) which breed in the head capsule of cotton plants.

Owing to the restricted availability of breeding-sites in the Sahel, the
cotton crops play a major role in supporting populations of drosophilids. It
is noticeable that here several of the most common species, and especially D.
melanogaster, colonize the peculiar breeding site of decaying organic matter
enclosed in the head capsules of cotton. No true specialists are recorded, and

F1G. 16. Aquatic or semi-aquatic life and predation in the Drosophila simulivora group
species. (a) Larvae of Drosophila libellulosa within the hydrated egg-mass of the dragonfly
Malgassophlebia aequatoris; (b) pupa of D. libellulosa on the egg-mass of M. aequatoris
(photographs after L. Tsacas and J. Legrand, 1979), (c) simuliid egg and larvae found in the
stomach of Drosophila simulivora larva; d: gut contents (Simulium larvae) of D. simulivora
larvae (photographs after L. Tsacas and R. H. L. Disney, 1974); (e) pupa of D. simulivora
attached on leaf hanging above fast running water; (f) sclerotinized hooks on the ventral pads
of D. simulivora larva; (g) larva of D. cogani with ventral pads (photographs after L. Tsacas).
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the three that are found are generalists with opportunistic behavior and high
colonizing abilities. These recent observations support the conclusions of
Séguy (1933b) that Girona gossypii, which was also reared from head
capsules of cotton plants in Mozambique, is breeding in close association
with a phytophagous insect, probably a lepidopteran larva.

Finally, Lachaise (1979a) has observed, in preforest savannahs of the
Ivory Coast, that the invading Scaptodrosophila species, D. latifasciaeformis
bred opportunistically in cadavers of caterpillars of Thaumetopoeidae which
were probably killed by a virus disease and were still hanging in a mass on a
branch of Ficus sur. In these savannahs D. latifasciaeformis breeds mainly in
the fruits of the Ronier palm tree Borassus aethiopum and this shows the
abilities of such an opportunistic species to realize rapid host switching,
thereby accounting for its great colonizing power.

It can finally be stressed that most known cases of drosophilid larvae
developing in decaying animal organic matter involve larvae of Lepidoptera.

IV. Conclusion

The African tropics are notable for the speciation and further wide adaptive
radiation of many taxa, e.g., the genus Lissocephala and the Drosophila fima
species group on native figs, the Drosophila simulivora species group with
their carnivorous larvae living in aquatic or semi-aquatic environments, the
Drosophila aterrima species complex on flowers, and many others. These
radiations are reflected by the fact that 809, of African drosophilids are
endemic species (Tsacas et al., Chapter 5, Volume 3a).

Some drosophilids, e.g. certain Lissocephala, are assumed to have evolved
a close association with their host-plant (Ficus) while others, e.g. Drosophila
latifasciaeformis, show rapid changes in breeding site (e.g., from palm-tree
fruits to decaying organic matter).

Tropical African drosophilids display a great range of breeding strategies
from phytophagous habits to predation. Moreover, in plant-feeding species
many specialization patterns exist, varying from monophagous species,
which may be dependent on a single or a restricted number of host plant
species (e.g., certain Lissocephala species, Zaprionus vrydaghi, Drosophila
sechellia and D. erecta) to polyphagous species which may breed on plants
from many different families (e.g., Drosophila yakuba, D. bocqueti or D.
malerkotliana). By bridging the defensive system of a particular plant
species an insect species may spread to other plant species with the same
defense system. Thus, some fig-breeding drosophilids may have thereby
spread to the entire genus Ficus.

The simulivora group radiation is undoubtedly the most fundamental
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evolutionary shift, since it involves both a change from terrestrial to aquatic
life and a change from a phytophagous diet to a predaceous one. Mayr
(1963) has pointed out that such fundamental shifts are only possible to the
carrier of a highly unlikely combination of characteristics, and that this is the
reason for the infrequency of such shifts.

The second point to be emphasized deals with the ecological equivalents
found in different biogeographical regions. Unrelated drosophilids, most
usually belonging to different genera, which evolved independently of one
another under similar environmental conditicns have in many cases
responded to similar selective pressures with nearly identical adaptations.
Thus the tropical African Drosophila libellulosa, which develops within
dragonfly egg-masses, fills a very similar ecological niche to that of the
neotropical Zygothrica sp., which breeds within frog egg-masses (Villa,
1977). It is probable that drosophilids whose larvae live within egg-masses
of insects or amphibia, feeding on their eggs or embryos, are more frequent
than is usually expected. Indeed, Lachaise and Couturier (personal
communication) recently reared ephydrid flies from the arboreal egg-
masses of rhacophorid frogs and chloropid flies from the arboreal
egg-masses of the dragonfly Tetrathemis sp. (Libellulidae) in the evergreen
rainforest of Tai. Both fly families are closely related to Drosophilidae
within the Drosophiloidea super-family.

Many other pairs of such independently evolved “ecological equivalents”
exist. Thus the larval habits of tropical African Leucophenga, which breed
within spittle masses of Pryelus, are strikingly close to those of the
neotropical and nearctic Cladochaeta, which breed within spittle-masses of
Clastoptera.

The tropical African monophagous Zaprionus vrydaghi, whose larvae
exploit the native Zingiberales, is equivalent ecologically to the neotropical
monophagous flower-breeding Drosophila species which exploit the neotro-
pical Zingiberales. Tropical African Drosophila species of the aterrima
complex, which breed preferentially in Convolvulaceae flowers are ecologi-
cal equivalents of the Hawaiian Exalloscaptomyza species which breed
exclusively in Convolvulaceae flowers (Heed, 1968; Kambysellis and Heed,
1971). Further, Drosophila (Scaptodrosophila) bangi which exploits the
sap-exudate of palm trees in tropical Africa, occupies a similar ecological
niche as do the many closely related picture-winged Drosophila of the
grimshawi subgroup in Hawaii (Montgomery, 1975).

The tropical African Gitona pauliani and Gitona ethiopica, which are
leaf-miners of Phytolaccaceae, have a similar ecological niche to the
palearctic leaf-mining Scaptomyza which attack Amarantaceae and Salsola-
ceae. Here it must be said, however, that leaf-mining Scaptomyza may also
occur in Africa.
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There is a second category of “ecologically equivalent species” which
comprises related species. Thus, for instance, Drosophila aterrima in
tropical Africa and D. hibisci in Australia are two closely related species of
the subgenus Scaprodrosophila which both breed within Hibiscus flowers or
similar tubiflorales. In such a case the similarity in the larval habits may not
be due to any evolutionary convergence, but may rather depend on the
proper process of speciation.

An intermediate category is provided by the genus Cacoxenus, in which
the same larval habits have evolved in two different subgenera in the tropical
African and palearctic regions. Thus, Cacoxenus apidoxenus, which col-
onizes the solitary bee nests of Chalicodoma in Africa belongs to the
subgenus Gitonides, while C. indagator which colonizes the nests of Osmia,
Chalicodoma and Anthophora in Europe, belongs to the subgenus Cacox-
enus. The other known Cacoxenus of both subgenera display different larval
habits.

The final category deals with entire (or nearly entire) genera or
subgenera, with different species in the different biogeographical regions,
but whose larval habits are similar. Thus, the genera Mycodrosophila,
Leucophenga and the subgenus Hirtodrosophila display fungus-breeding
habits on a world-wide basis. Similarly, Chymomyza species exploit fresh
tree-stumps, sections of freshly cut trees and peeled areas on tree trunks in
both the Nearctic and Afrotropical regions.

An important feature of tropical environments, with regard to the
reproductive strategies of drosophilids, is the occurrence of larval resources
which may remain suitable for drosophilid development for strikingly long
periods of time, e.g. from one to three months in fig species, or from one to
two months in Pandanus infrutescences. The long duration of certain
resources allows the occurrence of successional gradients, i.e. species
replacements occur as the long-lived substrates become older. Hence, the
importance in the tropics of ecological successions at one resource level has
led to foraging strategies absent or reduced in temperate drosophilids.

Another important feature of tropical African drosophilid communities is
the occurrence of specialization gradients both with regard to the array of
different resources available and to the different successional stages of a
particular resource. Then, intra-resource partitioning may add to inter-
resource partitioning to account for considerable species packing. Further-
more, species may be generalists with respect to the array of resources used
and specialists for a definite and equivalent successional stage in each of
them.

The wide occurrence of specialists in tropical African drosophilids raises
a question which is discussed by Pianka (1974): if the only currency of
natural selection is differential reproductive success and if specialization
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involves becoming less abundant, why have organisms become specialized
at all? Holmes (1976) wonders whether or not specialization is a dead end
and argues that specialized structures, or groups of animals, may have
retained an evolutionary potential. As far as the insect’s choice of food is
concerned Levins and MacArthur (1969) assumed that either monophagy
or polyphagy may be favored depending on the proportion of an extended
diet that would be unsuitable if chosen, versus the difficulty in finding the
most suitable food. These authors suggest that the strategy which is adopted
is that which maximizes the expected production of offspring in the face of
uncertainty due to failure in distinguishing between quite different plants.
Hence monophagy may remain optimal when higher and higher propor-
tions of unsuitable foods are present. Thus, if a female has a 509, chance of
locating a food on a restricted diet, she should remain restricted and not
extend her diet unless more than 309, of the extended diet items are suitable
(see arguments in Levins and MacArthur, loc. cit.).

Such thresholds of specialization are illustrated within the fima species
group. Species like Drosophila fima or D. abron remain restricted to Ficus
though both species are potentially able to breed in other fruits. As Feeny
(1975) has argued: “At least in a qualitative way, therefore, a variety of
possible adaptive advantages can be seen to accrue to insects with narrow
host plant ranges. The persistence of many species of rather general feeding
habits, however, prompts one to ask whether or not at least in some
circumstances specialist feeders may remain specialists not because this is
their optimal strategy but because once they have become specialists they
have little evolutionary opportunity to reverse the process.”

A similar example occurs in Drosophila erecta which specifically breeds in
the fruits of Pandanus candelabrum. When screwpines are fruiting, D. erecta
is strictly monophagous and develops large populations. When no Pandanus
are in fruit, D. erecta is expected to become more polyphagous, but then, the
population level is remarkably low, showing that an extension of the host
plant range might result in an appreciable increase in metabolic cost, for
example by tolerating a greater range of defensive chemicals present in a
wider array of host plants. Furthermore, Levins (1968) and MacArthur
(1972) emphasize that specialization in resource use is likely to be favored in
species faced with relatively constant or abundant resources. In contrast
more generalized species or genotypes are expected to be favored when
resources are rare and unpredictable. Thus, Futuyma (1979) argues that
“the overlap in resource use between genotypes is favored by avoiding
competition, but it is likely to increase insofar as the unpredictability of
resources favors generalized genotypes”.
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